Home
Class 12
MATHS
if y^x-x^y=1 then the value of (dy)/(dx)...

if `y^x-x^y=1` then the value of `(dy)/(dx)` at `x=1` is

A

`2(1-log2)`

B

`2(1+log2)`

C

`2-log2`

D

`2+log2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y^x - x^y = 1 \) and find the value of \( \frac{dy}{dx} \) at \( x = 1 \), we will follow these steps: ### Step 1: Differentiate the equation implicitly We start with the equation: \[ y^x - x^y = 1 \] Differentiating both sides with respect to \( x \): \[ \frac{d}{dx}(y^x) - \frac{d}{dx}(x^y) = 0 \] ### Step 2: Apply the product rule and chain rule Using the chain rule and product rule for differentiation: - For \( y^x \): \[ \frac{d}{dx}(y^x) = y^x \ln(y) + y^x \frac{dy}{dx} \cdot x \] - For \( x^y \): \[ \frac{d}{dx}(x^y) = x^y \ln(x) + x^y \frac{dy}{dx} \cdot y \] So, we have: \[ y^x \ln(y) + y^x x \frac{dy}{dx} - \left( x^y \ln(x) + x^y y \frac{dy}{dx} \right) = 0 \] ### Step 3: Rearrange the equation Rearranging gives: \[ y^x \ln(y) + y^x x \frac{dy}{dx} = x^y \ln(x) + x^y y \frac{dy}{dx} \] ### Step 4: Isolate \( \frac{dy}{dx} \) Now we can isolate \( \frac{dy}{dx} \): \[ y^x x \frac{dy}{dx} - x^y y \frac{dy}{dx} = x^y \ln(x) - y^x \ln(y) \] Factoring out \( \frac{dy}{dx} \): \[ \left( y^x x - x^y y \right) \frac{dy}{dx} = x^y \ln(x) - y^x \ln(y) \] Thus, \[ \frac{dy}{dx} = \frac{x^y \ln(x) - y^x \ln(y)}{y^x x - x^y y} \] ### Step 5: Evaluate at \( x = 1 \) Now we need to find \( y \) when \( x = 1 \): \[ y^1 - 1^y = 1 \implies y - 1 = 1 \implies y = 2 \] Substituting \( x = 1 \) and \( y = 2 \) into the expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1^2 \ln(1) - 2^1 \ln(2)}{2^1 \cdot 1 - 1^2 \cdot 2} \] Calculating the terms: - \( \ln(1) = 0 \) - \( 1^2 = 1 \) - \( 2^1 = 2 \) Thus, \[ \frac{dy}{dx} = \frac{0 - 2 \ln(2)}{2 - 2} = \frac{-2 \ln(2)}{0} \] ### Step 6: Conclusion Since the denominator is zero, we need to analyze the limit or behavior around this point. However, if we analyze the original equation, we see that as \( x \) approaches 1, the function behaves consistently, leading to a vertical tangent. Thus, we conclude that: \[ \frac{dy}{dx} \text{ is undefined at } x = 1. \]

To solve the problem \( y^x - x^y = 1 \) and find the value of \( \frac{dy}{dx} \) at \( x = 1 \), we will follow these steps: ### Step 1: Differentiate the equation implicitly We start with the equation: \[ y^x - x^y = 1 \] Differentiating both sides with respect to \( x \): ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

if 2^x+2^y=2^(x+y) then the value of (dy)/(dx) at x=y=1

If x^(y). y^(x)=16 , then the value of (dy)/(dx) at (2, 2) is

If y = x^(1/x) , the value of (dy)/(dx) at x =e is equal to

If y=e^(1+log_(e)x) , then the value of (dy)/(dx) is equal to

If y^x=x^y then (dy)/(dx) at x=1, y=1 is

If |x|<1 and y=1+x+x^2+x^3+... , then write the value of (dy)/(dx)dot

If x^(y)+y^(x)=1 then find (dy)/(dx)

If x^(x)+y^(y)=1 then find (dy)/(dx) .

If |x|<1 and y=1+x+x^2+\ ddotto\ oo , then find the value of (dy)/(dx) .

If y = 1/x , then the value of (dy)/(sqrt(1 + y^4)) + (dx)/(sqrt(1 + x^4)) + 3 is equal to

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. Let f(x)=3x^(2)+4xg'(1)+g''(2) and, g(x)=2x^(2)+3xf'(2)+f''(3)" for ...

    Text Solution

    |

  2. If f(x)=x^(n), then the value of f(1)-(f'(1))/(1!)+(f''(1))/(2!)-(f''...

    Text Solution

    |

  3. let f(x) be a polynomial function of second degree. If f(1)=f(-1)and a...

    Text Solution

    |

  4. Let f(x)=sqrt(x-1)+sqrt(x+24-10sqrt(x-1)), 1ltxlt26 be real valued fun...

    Text Solution

    |

  5. (d^2x)/(dy^2) equals: (1.) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2)...

    Text Solution

    |

  6. f(x) and g(x) are two differentiable functions in [0,2] such that f"(...

    Text Solution

    |

  7. If f(1) = 3, f' (1) = -1/3, then the derivative of {x^11 + f (x)}^-2 a...

    Text Solution

    |

  8. If y is a function of x and log(x+y)-2x y=0, then the value of y^(prim...

    Text Solution

    |

  9. Let y be an implicit function of x defined by x^(2x)-2x^(x) cot y-1=0...

    Text Solution

    |

  10. If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x), the value...

    Text Solution

    |

  11. Let g(x) = log f(x), where f(x) is a twice differentiable positive fun...

    Text Solution

    |

  12. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  13. If f(x)=(x)/(1+|x|)" for "x inR, then f'(0)=

    Text Solution

    |

  14. If f(x)=(1)/(1-x), then the derivative of the composite function f[f{f...

    Text Solution

    |

  15. "Let "f(theta)=sin (tan^(-1)((sin theta)/(sqrt(cos 2theta))))," where ...

    Text Solution

    |

  16. if y^x-x^y=1 then the value of (dy)/(dx) at x=1 is

    Text Solution

    |

  17. "If "y=sec (tan^(-1)x)," then "(dy)/(dx)" at "x=1 is equal to

    Text Solution

    |

  18. Let y(x)=cos(3cos^-1x),x in [-1,1],x != +- sqrt3/2. Then 1/(y(x)){(x^2...

    Text Solution

    |

  19. If a curve is represented parametrically by the equation x = 4t^(3)+3 ...

    Text Solution

    |

  20. "If for "x in (0,(1)/(4))," the derivative of "tan^(-1)((6xsqrt(x))/(1...

    Text Solution

    |