Home
Class 12
MATHS
The equation of the normal to the curve ...

The equation of the normal to the curve `y=x(2-x)` at the point (2, 0) is

A

`x-2y=2`

B

`x-2y+2=0`

C

`2x+y=4`

D

`2x+y-4=0`

Text Solution

Verified by Experts

The correct Answer is:
A

The equation of the curve is `y=x(2-x) or, y=2x-x^(2)`
`rArr (dy)/(dx)=2-2x rArr ((dy)/(dx))_((2","0)) = 2-2 xx2 = -2`
So, the equation of the normal at (2, 0) is
`y-0= -(1)/(-2) (x-2) or, 2y=x-2`
Promotional Banner

Topper's Solved these Questions

  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|49 Videos
  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|42 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

The equation of the normal to the curve y=x^(-x) at the point of its maximum is

Equation of the normal to the curve y=-sqrt(x)+2 at the point (1,1)

The equation of the normal to the curve y= e^(-2|x|) at the point where the curve cuts the line x=-(1)/(2), is

The equation of the normal to the curve y=e^(-2|x|) at the point where the curve cuts the line x = 1//2 is

Find the equation of the normal to the curve a y^2=x^3 at the point (a m^2,\ a m^3) .

The equation of the normal to the curve y = sin x at (0,0) is

Find the equation of the normal to the curve x^3+y^3=8x y at the point where it meets the curve y^2=4x other than the origin.

Find the equation of the normal to the curve x^2+2y^2-4x-6y+8=0 at the point whose abscissa is 2.

Find the equation of the normal to the curve x^2+2y^2-4x-6y+8=0 at the point whose abscissa is 2.

Find the equation of normal of the curve 2y= 7x - 5x^(2) at those points at which the curve intersects the line x = y.

OBJECTIVE RD SHARMA ENGLISH-TANGENTS AND NORMALS-Chapter Test
  1. The equation of the normal to the curve y=x(2-x) at the point (2, 0) i...

    Text Solution

    |

  2. The abscissa of the point on the curve ay^(2)=x^(3), the normal at whi...

    Text Solution

    |

  3. If the curves (x^2)/(a^2)+(y^2)/(b^2)=1 and (x^2)/(l^2)-(y^2)/(m^2)=1c...

    Text Solution

    |

  4. The length of normal at any point to the curve, y=c cosh(x/c) is

    Text Solution

    |

  5. If the sub-normal at any point on y=a^(1-n)x^(n) is of constant length...

    Text Solution

    |

  6. The angle of intersection of the curves y=x^(2), 6y=7-x^(3) at (1, 1),...

    Text Solution

    |

  7. The slope of the tangent to the curve x=t^2+3t-8,\ \ y=2t^2-2t-5 at ...

    Text Solution

    |

  8. What is the angle between these two curves x^3-3xy^2+2=0 and 3x^2y-y^3...

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. If y=4x-5 is a tangent to the curve y^(2)=px^(3)+q at (2, 3), then:

    Text Solution

    |

  11. The curve y-e^(xy)+x=0 has a vertical tangent at the point:

    Text Solution

    |

  12. The tangent to the curve given by x = e^(t) cos t y = e^(t) " sin t ...

    Text Solution

    |

  13. The length of the normal at t on the curve x=a(t+sint), y=a(1-cos t), ...

    Text Solution

    |

  14. For the parabola y^(2)=4ax, the ratio of the subtangent to the absciss...

    Text Solution

    |

  15. The length of the subtangent to the curve sqrt(x) +sqrt(y)=3 at the po...

    Text Solution

    |

  16. Find the euation of normal to the curve x=a( cos theta + theta sin th...

    Text Solution

    |

  17. Tangents ar drawn to y= cos x from origin then points of contact for t...

    Text Solution

    |

  18. If m denotes the slope of the normal to the curve y= -3 log(9+x^(2)) a...

    Text Solution

    |

  19. If m be the slope of the tangent to the curve e^(2y) = 1+4x^(2), then

    Text Solution

    |

  20. If the curve y=ax^(3) +bx^(2) +c x is inclined at 45^(@) to x-axis at...

    Text Solution

    |

  21. If the curve y=ax^(2)+bx+c passes through the point (1, 2) and the lin...

    Text Solution

    |