Home
Class 12
MATHS
Consider f(x) =tan^(-1)(sqrt((1+sinx)/(1...

Consider `f(x) =tan^(-1)(sqrt((1+sinx)/(1-sinx))),c in(0,(pi)/(2)).` A normal to `y=(x) at x=(pi)/(6)` also pasess through the point

A

(0, 0)

B

`(0, (2pi)/(3))`

C

`((pi)/(6),0)`

D

`((pi)/(4),0)`

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`y ="tan" ^(-1)sqrt((1+sinx)/(1-sinx))= tan^(-1)(("cos"(x)/(2) + " sin" (x)/(2))/("cos"(x)/(2) - " sin" (x)/(2)))`
` rArr y=tan^(-1) (tan((x)/(4)+(x)/(2)))`
` rArr y= (pi)/(4)+ (x)/(2)`
` rArr (dy)/(dx) = (1)/(2) rArr (1)/(dy//dx)= -2.`
When `x=(pi)/(6),y=(pi)/(4)+(pi)/(12)=(pi)/(3).`
The equation of the normal at `(pi//6, pi//3)` is
` y-(pi)/(3)= -2(x-(pi)/(6)) or , 2x+y-(2pi)/(3) =0`
Clearly, it passes through `(0, (2pi)/(3)).`
Promotional Banner

Topper's Solved these Questions

  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|49 Videos
  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|42 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Consider f(x)=tan^(-1)(sqrt((1+sinx)/(1-sinx))), x in (0,pi/2)dot A normal to y=f(x) at x=pi/6 also passes through the point: (1) (0, 0) (2) (0,(2pi)/3) (3) (pi/6,0) (4) (pi/4,0)

If y= tan^(-1)sqrt((1-sinx)/(1+sinx)) , then the value of (dy)/(dx) at x= (pi)/6 is.

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

tan^(-1)((cosx-sinx)/(cosx+sinx))=pi/4-x

Differentiate tan^(-1){sqrt((1+sinx)/(1-sinx))},\ -pi/2

Evaluate: inttan^(-1){sqrt(((1-sinx)/(1+sinx)))}\ dx ,\ -pi//2

Prove that : int_(0)^(pi) (x sin x)/(1+sinx) dx=pi((pi)/(2)-1)

Prove that tan^-1((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)

If 2y=(cot^(-1) ((sqrt3cosx+sinx)/(cosx-sqrt3sinx)))^2, x in (0,pi/2) then y' is equal to

Differentiate tan^(-1){(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))} , 0 < x < pi

OBJECTIVE RD SHARMA ENGLISH-TANGENTS AND NORMALS-Chapter Test
  1. Consider f(x) =tan^(-1)(sqrt((1+sinx)/(1-sinx))),c in(0,(pi)/(2)). A n...

    Text Solution

    |

  2. The abscissa of the point on the curve ay^(2)=x^(3), the normal at whi...

    Text Solution

    |

  3. If the curves (x^2)/(a^2)+(y^2)/(b^2)=1 and (x^2)/(l^2)-(y^2)/(m^2)=1c...

    Text Solution

    |

  4. The length of normal at any point to the curve, y=c cosh(x/c) is

    Text Solution

    |

  5. If the sub-normal at any point on y=a^(1-n)x^(n) is of constant length...

    Text Solution

    |

  6. The angle of intersection of the curves y=x^(2), 6y=7-x^(3) at (1, 1),...

    Text Solution

    |

  7. The slope of the tangent to the curve x=t^2+3t-8,\ \ y=2t^2-2t-5 at ...

    Text Solution

    |

  8. What is the angle between these two curves x^3-3xy^2+2=0 and 3x^2y-y^3...

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. If y=4x-5 is a tangent to the curve y^(2)=px^(3)+q at (2, 3), then:

    Text Solution

    |

  11. The curve y-e^(xy)+x=0 has a vertical tangent at the point:

    Text Solution

    |

  12. The tangent to the curve given by x = e^(t) cos t y = e^(t) " sin t ...

    Text Solution

    |

  13. The length of the normal at t on the curve x=a(t+sint), y=a(1-cos t), ...

    Text Solution

    |

  14. For the parabola y^(2)=4ax, the ratio of the subtangent to the absciss...

    Text Solution

    |

  15. The length of the subtangent to the curve sqrt(x) +sqrt(y)=3 at the po...

    Text Solution

    |

  16. Find the euation of normal to the curve x=a( cos theta + theta sin th...

    Text Solution

    |

  17. Tangents ar drawn to y= cos x from origin then points of contact for t...

    Text Solution

    |

  18. If m denotes the slope of the normal to the curve y= -3 log(9+x^(2)) a...

    Text Solution

    |

  19. If m be the slope of the tangent to the curve e^(2y) = 1+4x^(2), then

    Text Solution

    |

  20. If the curve y=ax^(3) +bx^(2) +c x is inclined at 45^(@) to x-axis at...

    Text Solution

    |

  21. If the curve y=ax^(2)+bx+c passes through the point (1, 2) and the lin...

    Text Solution

    |