Home
Class 12
MATHS
If f(x)={:{(3x^2+12x-1"," -1le x le2),(3...

If `f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):}` then

A

f(X) increasing on [-1,2]

B

f(x) is continuos on [-1,3]

C

f'(2) does not exist

D

all of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the piecewise function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} 3x^2 + 12x - 1 & \text{for } -1 \leq x \leq 2 \\ 37 - x & \text{for } 2 < x \leq 3 \end{cases} \] ### Step 1: Differentiate \( f(x) \) 1. For the first piece \( f(x) = 3x^2 + 12x - 1 \): \[ f'(x) = \frac{d}{dx}(3x^2 + 12x - 1) = 6x + 12 \] 2. For the second piece \( f(x) = 37 - x \): \[ f'(x) = \frac{d}{dx}(37 - x) = -1 \] ### Step 2: Analyze the derivative in the intervals 1. For \( -1 \leq x \leq 2 \): \[ f'(x) = 6x + 12 \] - At \( x = -1 \): \[ f'(-1) = 6(-1) + 12 = 6 \quad (\text{positive}) \] - At \( x = 2 \): \[ f'(2) = 6(2) + 12 = 24 \quad (\text{positive}) \] - Since \( f'(x) \) is a linear function that increases from 6 to 24, \( f'(x) > 0 \) for all \( x \) in the interval \( -1 \leq x \leq 2 \). Thus, \( f(x) \) is increasing in this interval. 2. For \( 2 < x \leq 3 \): \[ f'(x) = -1 \quad (\text{constant and negative}) \] - This means \( f(x) \) is decreasing in the interval \( 2 < x \leq 3 \). ### Step 3: Check continuity at the boundary \( x = 2 \) 1. Calculate \( f(2) \): \[ f(2) = 3(2)^2 + 12(2) - 1 = 12 + 24 - 1 = 35 \] 2. Calculate \( f(2^+) \): \[ f(2^+) = 37 - 2 = 35 \] 3. Since \( f(2) = f(2^+) \), the function is continuous at \( x = 2 \). ### Step 4: Check differentiability at \( x = 2 \) 1. Calculate the left-hand derivative \( f'(2^-) \): \[ f'(2^-) = 6(2) + 12 = 24 \] 2. Calculate the right-hand derivative \( f'(2^+) \): \[ f'(2^+) = -1 \] 3. Since \( f'(2^-) \neq f'(2^+) \), the function is not differentiable at \( x = 2 \). ### Conclusion - \( f(x) \) is increasing in the interval \( -1 \leq x \leq 2 \). - \( f(x) \) is continuous in the interval \( -1 \leq x \leq 3 \). - \( f(x) \) is not differentiable at \( x = 2 \).

To solve the given problem, we need to analyze the piecewise function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} 3x^2 + 12x - 1 & \text{for } -1 \leq x \leq 2 \\ 37 - x & \text{for } 2 < x \leq 3 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|36 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

Show that the function f (x)={ {:(3x^(2) + 12 x - 1,- 1 le x le 2 ),(" "37 - x," "2 lt x le 3 ):} is continuous at x = 2

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The range of the function f(g(x)) is

The relation f is defined by f(x) ={(3x+2", "0le x le2),(x^(3)", "2 le x le 5):}. The relation g is defined by g(x) ={(3x+2", "0le x le1),(x^(3)", "1 le x le 5):} Show that f is a function and g is not a function

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

The points of discontinuity of the function f (x) = {{:(3x + 1"," ,0 le x lt2),(4x - 1"," ,2 lt x le 6),(5x + 2",", 6 lt x le 10 ):} are:

Suppose f:[-2,2] to R is defined by f(x)={{:(-1 " for " -2 le x le 0),(x-1 " for " 0 le x le 2):} , then {x in [-2,2]: x le 0 and f(|x|)=x}=

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

OBJECTIVE RD SHARMA ENGLISH-INCREASING AND DECREASING FUNCTIONS-Section I - Solved Mcqs
  1. Let fa n dg be increasing and decreasing functions, respectively, from...

    Text Solution

    |

  2. The interval in which f(x) increases less repidly than g(x), f(x)=2x^3...

    Text Solution

    |

  3. If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

    Text Solution

    |

  4. Given that f(x) gt f(x) for all x in R and f(0) =g(0) then

    Text Solution

    |

  5. The fucntion f(x)=(sin x)/(x) is decreasing in the interval

    Text Solution

    |

  6. [ If 0ltxlt(pi)/(2) then 1) (2)/(pi)gt(sin x)/(x) (2)(pi)lt(sin x)/(...

    Text Solution

    |

  7. If 0 lt alpha lt beta lt (pi)/(2) then

    Text Solution

    |

  8. If 0 le x le pi/2 then

    Text Solution

    |

  9. If f(x)=x.e^(x(1-x), then f(x) is

    Text Solution

    |

  10. If f(x) = underset(0)overset(x)inte^(t^(2)) (t-2) (t-3) dt for all x ...

    Text Solution

    |

  11. If 0 lt x lt pi/2 then

    Text Solution

    |

  12. If 0 lt x lt pi /2 then

    Text Solution

    |

  13. Let f: RvecR be a function such that f(x)=a x+3sinx+4cosxdot Then f(x)...

    Text Solution

    |

  14. if the function f: R rarr R given be f(x)=x^3 + ax^2 + 5 x + sin 2x ...

    Text Solution

    |

  15. If f(x)=sin x,x in [-pi//2,pi//2] then which one of the following is n...

    Text Solution

    |

  16. If f: Rrarr R defined by f(x) = 3x+2a cos x -5 is invertible then 'a' ...

    Text Solution

    |

  17. Let f(x) be a function defined by f(x) =(ab -a^2-2)x -underset(0)ov...

    Text Solution

    |

  18. Let f(x) and g(x) be defined and differntiable for all x ge x0 and f(x...

    Text Solution

    |

  19. If a lt 0 and f(x)=e^(ax )+ e^(-ax) is monotonically decreasing . F...

    Text Solution

    |

  20. If f(x)= underset(x)overset(x^2)int1/((log t)^2)dt ,x ne 1 then f(x)is...

    Text Solution

    |