Home
Class 12
MATHS
If 0 lt alpha lt beta lt (pi)/(2) then...

`If 0 lt alpha lt beta lt (pi)/(2)` then

A

`(tan beta)/(tan alpha ) lt (alpha)/(beta)`

B

`(tan beta)/(tan alpha) gt (alpha)/(beta)`

C

`(tan beta )/(tan alpha ) gt (alpha)/(beta)`

D

`(tan alpha)/(tan beta )le (alpha)/(beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = x \tan(x) \) over the interval \( (0, \frac{\pi}{2}) \) and determine the relationship between \( \tan(\alpha) \) and \( \tan(\beta) \) given that \( 0 < \alpha < \beta < \frac{\pi}{2} \). ### Step-by-step Solution: 1. **Define the function**: Let \( f(x) = x \tan(x) \) where \( x \) is in the interval \( (0, \frac{\pi}{2}) \). 2. **Differentiate the function**: We need to find the derivative \( f'(x) \) to analyze the behavior of the function. \[ f'(x) = \frac{d}{dx}(x \tan(x)) = \tan(x) + x \sec^2(x) \] Here, we used the product rule for differentiation. 3. **Analyze the derivative**: Since \( \tan(x) \) and \( \sec^2(x) \) are both positive in the interval \( (0, \frac{\pi}{2}) \), we can conclude that: \[ f'(x) > 0 \quad \text{for } x \in (0, \frac{\pi}{2}) \] This means that \( f(x) \) is an increasing function in this interval. 4. **Apply the increasing function property**: Given that \( \alpha < \beta \), and since \( f(x) \) is increasing, we have: \[ f(\alpha) < f(\beta) \] 5. **Substitute the function values**: Now substituting back the function values: \[ \alpha \tan(\alpha) < \beta \tan(\beta) \] 6. **Rearranging the inequality**: We can rearrange this inequality to compare \( \tan(\alpha) \) and \( \tan(\beta) \): \[ \frac{\tan(\beta)}{\tan(\alpha)} > \frac{\alpha}{\beta} \] 7. **Conclusion**: Therefore, we conclude that: \[ \frac{\tan(\beta)}{\tan(\alpha)} > \frac{\alpha}{\beta} \] ### Final Answer: The correct relationship is: \[ \tan(\beta) > \frac{\alpha}{\beta} \tan(\alpha) \]

To solve the problem, we need to analyze the function \( f(x) = x \tan(x) \) over the interval \( (0, \frac{\pi}{2}) \) and determine the relationship between \( \tan(\alpha) \) and \( \tan(\beta) \) given that \( 0 < \alpha < \beta < \frac{\pi}{2} \). ### Step-by-step Solution: 1. **Define the function**: Let \( f(x) = x \tan(x) \) where \( x \) is in the interval \( (0, \frac{\pi}{2}) \). 2. **Differentiate the function**: We need to find the derivative \( f'(x) \) to analyze the behavior of the function. \[ ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|36 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If alpha = cos^(-1)((3)/(5)), beta = tan ^(-1)((1)/(3)) , where 0 lt alpha, beta lt (pi)/(2) , then alpha - beta is equal to

If 0 lt alpha lt beta lt gamma lt pi//2 , then the equation (x-sinbeta)(x-singamma)+(x-sinalpha)(x-singamma)+(x-sinalpha)(x-sinbeta)=0 has

If 0 lt alpha lt (pi)/(3) , then prove that alpha (sec alpha) lt (2pi)/(3).

If 0 lt alpha, beta lt pi and they satisfy cos alpha + cosbeta - cos(alpha + beta)=3/2

If sin alpha = 3/5, tan beta = 1/2 and pi/2 lt alpha lt pi lt beta lt (3pi)/2 , show that 8 tan alpha - sqrt(5) sec beta = - 7/2 .

If 0 lt alpha lt beta then lim_(n to oo) (beta^(n) + alpha^(n))^((1)/(n)) is equal to

If cos (theta - alpha) = a and sin(theta - beta) = b (0 lt theta - alpha, theta - beta lt pi//2) , then prove that cos^(2) (alpha - beta) + 2ab sin (alpha - beta) = a^(2) + b^(2)

If tan alpha =(b)/(a), a gt b gt 0 and " if " 0 lt alpha lt (pi)/(4), " then " sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b)) is equal to :

If (sin alpha)^(x)+(cos alpha)^(x) ge 1,0 lt a lt (pi)/(2) then

If 0 lt alpha lt (pi)/(16) and (1+tan alpha)(1+tan4alpha)=2 , then the value of alpha is equal to

OBJECTIVE RD SHARMA ENGLISH-INCREASING AND DECREASING FUNCTIONS-Section I - Solved Mcqs
  1. The fucntion f(x)=(sin x)/(x) is decreasing in the interval

    Text Solution

    |

  2. [ If 0ltxlt(pi)/(2) then 1) (2)/(pi)gt(sin x)/(x) (2)(pi)lt(sin x)/(...

    Text Solution

    |

  3. If 0 lt alpha lt beta lt (pi)/(2) then

    Text Solution

    |

  4. If 0 le x le pi/2 then

    Text Solution

    |

  5. If f(x)=x.e^(x(1-x), then f(x) is

    Text Solution

    |

  6. If f(x) = underset(0)overset(x)inte^(t^(2)) (t-2) (t-3) dt for all x ...

    Text Solution

    |

  7. If 0 lt x lt pi/2 then

    Text Solution

    |

  8. If 0 lt x lt pi /2 then

    Text Solution

    |

  9. Let f: RvecR be a function such that f(x)=a x+3sinx+4cosxdot Then f(x)...

    Text Solution

    |

  10. if the function f: R rarr R given be f(x)=x^3 + ax^2 + 5 x + sin 2x ...

    Text Solution

    |

  11. If f(x)=sin x,x in [-pi//2,pi//2] then which one of the following is n...

    Text Solution

    |

  12. If f: Rrarr R defined by f(x) = 3x+2a cos x -5 is invertible then 'a' ...

    Text Solution

    |

  13. Let f(x) be a function defined by f(x) =(ab -a^2-2)x -underset(0)ov...

    Text Solution

    |

  14. Let f(x) and g(x) be defined and differntiable for all x ge x0 and f(x...

    Text Solution

    |

  15. If a lt 0 and f(x)=e^(ax )+ e^(-ax) is monotonically decreasing . F...

    Text Solution

    |

  16. If f(x)= underset(x)overset(x^2)int1/((log t)^2)dt ,x ne 1 then f(x)is...

    Text Solution

    |

  17. The interval in which the function f(x)=underset(0)overset(x)int((t...

    Text Solution

    |

  18. If f(x)=x^3+bx^2+cx+d and 0<b^2<c, then

    Text Solution

    |

  19. For the function f(x)=x cos ""1/x, x ge 1 which one of the following i...

    Text Solution

    |

  20. If the function g:(-oo,oo)rarr(-(pi)/(2),(pi)/(2)) is given by g(u)=...

    Text Solution

    |