Home
Class 12
MATHS
If 0 le x le pi/2 then...

`If 0 le x le pi/2 then `

A

`2 sin x + tan x lt 3x `

B

`2 sin x+tan x lt 2 x `

C

`2 sin x + tan x le 3x `

D

`2 sin x+ tan x le 3x `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = 2 \cos x + \sec^2 x - 3 \) on the interval \( [0, \frac{\pi}{2}] \). We will find the first and second derivatives to determine the behavior of the function. ### Step 1: Define the function We start with the function: \[ f(x) = 2 \cos x + \sec^2 x - 3 \] ### Step 2: Find the first derivative Next, we differentiate \( f(x) \) to find \( f'(x) \): \[ f'(x) = \frac{d}{dx}(2 \cos x) + \frac{d}{dx}(\sec^2 x) - \frac{d}{dx}(3) \] Using the derivatives: - The derivative of \( 2 \cos x \) is \( -2 \sin x \). - The derivative of \( \sec^2 x \) is \( 2 \sec^2 x \tan x \). Thus, we have: \[ f'(x) = -2 \sin x + 2 \sec^2 x \tan x \] ### Step 3: Find the critical points To find critical points, we set \( f'(x) = 0 \): \[ -2 \sin x + 2 \sec^2 x \tan x = 0 \] This simplifies to: \[ \sec^2 x \tan x = \sin x \] Rearranging gives: \[ \tan x = \sin x \cos^2 x \] ### Step 4: Analyze the second derivative Now, we find the second derivative \( f''(x) \) to check the concavity: \[ f''(x) = -2 \cos x + 2 \sec^2 x \tan^2 x + 2 \sec^4 x \] This expression will help us determine if \( f(x) \) is increasing or decreasing. ### Step 5: Determine the intervals of increase/decrease We need to check the sign of \( f'(x) \) over the interval \( [0, \frac{\pi}{2}] \): - At \( x = 0 \): \[ f'(0) = -2 \sin(0) + 2 \sec^2(0) \tan(0) = 0 \] - At \( x = \frac{\pi}{2} \): \[ f'(\frac{\pi}{2}) \text{ is undefined since } \sec^2(\frac{\pi}{2}) \text{ is undefined.} \] ### Step 6: Evaluate the function at endpoints Evaluate \( f(x) \) at the endpoints: - At \( x = 0 \): \[ f(0) = 2 \cos(0) + \sec^2(0) - 3 = 2 + 1 - 3 = 0 \] - As \( x \) approaches \( \frac{\pi}{2} \): \[ f(x) \to \infty \text{ since } \sec^2 x \to \infty. \] ### Conclusion Since \( f(0) = 0 \) and \( f(x) \to \infty \) as \( x \) approaches \( \frac{\pi}{2} \), and \( f'(x) \) is positive in the interval, we conclude that \( f(x) \) is increasing on \( [0, \frac{\pi}{2}] \). ### Final Answer Thus, \( f(x) > 0 \) for all \( x \in (0, \frac{\pi}{2}) \).

To solve the problem, we need to analyze the function \( f(x) = 2 \cos x + \sec^2 x - 3 \) on the interval \( [0, \frac{\pi}{2}] \). We will find the first and second derivatives to determine the behavior of the function. ### Step 1: Define the function We start with the function: \[ f(x) = 2 \cos x + \sec^2 x - 3 \] ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|36 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

If 0 le x le 2pi , then 2^(cosec^(2) x) sqrt(1/2 y^(2) -y+1) le sqrt(2)

If sin^4x + cos^4y + 2 = 4 sin x.cos y and 0 le x, y le pi/2 then sin x + cos y is equal to

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

If 0 le x le (pi)/(2) and sin^(2)x=a and cos^(2)x=b , then sin 2x+cos 2x=

If cos x- sin x ge 1 and 0 le x le 2pi , then find the solution set for x .

If cos x=sqrt(1-sin 2x),0 le x le pi then a value of x is

If 0 le x le pi , where is (tan x)/(sin x) defined ?

If a. 3^(tanx) + a. 3^(-tanx) - 2 = 0 has real solutions, x != pi/2 , 0 le x le pi, then find the set of all possible values of parameter 'a'.

OBJECTIVE RD SHARMA ENGLISH-INCREASING AND DECREASING FUNCTIONS-Section I - Solved Mcqs
  1. [ If 0ltxlt(pi)/(2) then 1) (2)/(pi)gt(sin x)/(x) (2)(pi)lt(sin x)/(...

    Text Solution

    |

  2. If 0 lt alpha lt beta lt (pi)/(2) then

    Text Solution

    |

  3. If 0 le x le pi/2 then

    Text Solution

    |

  4. If f(x)=x.e^(x(1-x), then f(x) is

    Text Solution

    |

  5. If f(x) = underset(0)overset(x)inte^(t^(2)) (t-2) (t-3) dt for all x ...

    Text Solution

    |

  6. If 0 lt x lt pi/2 then

    Text Solution

    |

  7. If 0 lt x lt pi /2 then

    Text Solution

    |

  8. Let f: RvecR be a function such that f(x)=a x+3sinx+4cosxdot Then f(x)...

    Text Solution

    |

  9. if the function f: R rarr R given be f(x)=x^3 + ax^2 + 5 x + sin 2x ...

    Text Solution

    |

  10. If f(x)=sin x,x in [-pi//2,pi//2] then which one of the following is n...

    Text Solution

    |

  11. If f: Rrarr R defined by f(x) = 3x+2a cos x -5 is invertible then 'a' ...

    Text Solution

    |

  12. Let f(x) be a function defined by f(x) =(ab -a^2-2)x -underset(0)ov...

    Text Solution

    |

  13. Let f(x) and g(x) be defined and differntiable for all x ge x0 and f(x...

    Text Solution

    |

  14. If a lt 0 and f(x)=e^(ax )+ e^(-ax) is monotonically decreasing . F...

    Text Solution

    |

  15. If f(x)= underset(x)overset(x^2)int1/((log t)^2)dt ,x ne 1 then f(x)is...

    Text Solution

    |

  16. The interval in which the function f(x)=underset(0)overset(x)int((t...

    Text Solution

    |

  17. If f(x)=x^3+bx^2+cx+d and 0<b^2<c, then

    Text Solution

    |

  18. For the function f(x)=x cos ""1/x, x ge 1 which one of the following i...

    Text Solution

    |

  19. If the function g:(-oo,oo)rarr(-(pi)/(2),(pi)/(2)) is given by g(u)=...

    Text Solution

    |

  20. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |