Home
Class 12
MATHS
If the function g:(-oo,oo)rarr(-(pi)/(2)...

If the function `g:(-oo,oo)rarr(-(pi)/(2),(pi)/(2))` is given by
`g(u)=2 tan ^(-1) (e^(u))-(pi)/(2).` Then g is

A

even and is strictly increasing in `(0,oo)`

B

odd and is strictly decreasing `(-oo,oo)`

C

odd and is strictly increasing in `(-oo,oo)`

D

neither even nor odd , but is stictly increasing in `(-oo,oo)`

Text Solution

Verified by Experts

The correct Answer is:
C

we have
` g(u)=2 tan^(-1) (e^u)-pi/2`
`rArr g(u)=(2e^u)/(1+ e^(2u))gt 0 "for all u " rarr (-oo ,oo)`
`rarr` g is stictly increasing function in `(-oo,oo)`
Now
`g(u) = tan^(-1)(e^u)-pi/2`
`rArr g(u) = tan^(-1)(e^u )-(pi/2-tan ^(-1)(e^u))`
`rArr g(u)=tan^(-1)(e^u)-cot^(-1)(e^(u))`
`rArr g(-u)=tan ^(-1)(e^u)-cot^(-1)(e^(-u))`
`rArr g(-u) = tan^(-1)(e^(1//u))-cot^(-1)(e^(1//u))`
`rArr g(-u)=cot^(-1)(e^u)-tan^(-1)(e^u)=-g(u)`
Hence g(u) is odd and is strictly increasing `(-oo,oo)`
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|36 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If the function g:(-oo,oo)->(-pi/2,pi/2) is given by g(u)=2tan^-1(e^u)-pi/2. Then, g is

f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log_(e)x) . The above function can be classified as :

Consider the function f:(-oo,oo)rarr(-oo,oo) defined by f(x)=(x^2-ax+1)/(x^2+ax+1), 0ltalt2 , and let g(x)=int_0^(e^x) (f\'(t)dt)/(1+t^2) . Which of the following is true? (A) g\'(x) is positive on (-oo,0) and negative on (0,oo) (B) g\'(x) is negative on (-oo,0) and positive on (0,oo) (C) g\'(x) changes sign on both (-oo,0) and (0,oo) (D) g\'(x) does not change sign on (-oo,oo)

If function f(x) = (1+2x) has the domain (-(pi)/(2), (pi)/(2)) and co-domain (-oo, oo) then function is

Let f and g be two differentiable functins such that: f (x)=g '(1) sin x+ (g'' (2) -1) x g (x) = x^(2) -f'((pi)/(2)) x+ f'(-(pi)/(2)) If phi (x) =f ^(-1) (x) then phi'((pi)/(2) +1) equals to :

The value of lim_(x rarr 1)(2-x)^(tan((pix)/2)) is (a) e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

The value of lim_(x->1)(2-x)^(tan((pix)/2)) is e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x) is the inverse function of f(x) , then the value of g'((pi)/(4)) is equal to

f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log_(e)x) . The graph of y = f (x) is best represented by

The solution set of inequality (tan^(-1)x)(cot^(-1)x)-(tan^(-1)x)(1+(pi)/(2))-2cot^(-1)x+2(1+(pi)/(2))gtlim_(yrarr-oo)[sec^(-1)y-(pi)/(2)] is (where [ . ]denotes the G.I.F.)

OBJECTIVE RD SHARMA ENGLISH-INCREASING AND DECREASING FUNCTIONS-Section I - Solved Mcqs
  1. If a lt 0 and f(x)=e^(ax )+ e^(-ax) is monotonically decreasing . F...

    Text Solution

    |

  2. If f(x)= underset(x)overset(x^2)int1/((log t)^2)dt ,x ne 1 then f(x)is...

    Text Solution

    |

  3. The interval in which the function f(x)=underset(0)overset(x)int((t...

    Text Solution

    |

  4. If f(x)=x^3+bx^2+cx+d and 0<b^2<c, then

    Text Solution

    |

  5. For the function f(x)=x cos ""1/x, x ge 1 which one of the following i...

    Text Solution

    |

  6. If the function g:(-oo,oo)rarr(-(pi)/(2),(pi)/(2)) is given by g(u)=...

    Text Solution

    |

  7. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  8. Consider the polynomial f(x)=1 + 2x + 3x^2 +4x^3 for all x in R So...

    Text Solution

    |

  9. Consider the polynomial f(x) = 1+2x+3x^(2)+4x^(3) Let s be the sum...

    Text Solution

    |

  10. If f(x)=x^(3/2)(3x-10),xgeq0, then f(x) is increasing in .

    Text Solution

    |

  11. Let f(x) = log (sin x+ cos x), x in x (-pi/4,(3pi)/(4)) Then f is st...

    Text Solution

    |

  12. Let f(x) = (1-x)^(2) sin^(2)x+ x^(2) for all x in IR and let g(x) = un...

    Text Solution

    |

  13. f(x)=x|logex|,x gt 0 is monotonically decreasig in

    Text Solution

    |

  14. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  15. Let f(x)=1-x-x^(3). Then, the real values of x satisfying the inequali...

    Text Solution

    |

  16. Let g(x)=f(sin x)+ f(cosx), then g(x) is decreasing on:

    Text Solution

    |

  17. Let f(x) be a monotonic polynomial of (2m-1) degree where m in N, then...

    Text Solution

    |

  18. Let f(x) =sin^4x+cos^4x. Then f is increasing function in the interval

    Text Solution

    |

  19. If f:R->R is a twice differentiable function such that f''(x) > 0 for ...

    Text Solution

    |

  20. If f:R is a differentiable fucntion such that f(x) gt 2f(x) for all x...

    Text Solution

    |