Home
Class 12
MATHS
The function y=cot^(-1) x- log (x+sqrt(x...

The function `y=cot^(-1) x- log (x+sqrt(x^2+1))` is decreasing in

A

`(-oo , 0)`

B

`(-oo,0)`

C

`(0,oo)`

D

`(-oo,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine where the function \( y = \cot^{-1}(x) - \log(x + \sqrt{x^2 + 1}) \) is decreasing, we need to find its derivative and analyze its sign. ### Step-by-Step Solution: 1. **Differentiate the Function**: We start by differentiating the function \( y \): \[ y' = \frac{d}{dx} \left( \cot^{-1}(x) \right) - \frac{d}{dx} \left( \log(x + \sqrt{x^2 + 1}) \right) \] 2. **Differentiate \( \cot^{-1}(x) \)**: The derivative of \( \cot^{-1}(x) \) is: \[ \frac{d}{dx} \left( \cot^{-1}(x) \right) = -\frac{1}{1 + x^2} \] 3. **Differentiate \( \log(x + \sqrt{x^2 + 1}) \)**: Using the chain rule, we differentiate \( \log(u) \) where \( u = x + \sqrt{x^2 + 1} \): \[ \frac{d}{dx} \left( \log(u) \right) = \frac{1}{u} \cdot \frac{du}{dx} \] First, we find \( \frac{du}{dx} \): \[ u = x + \sqrt{x^2 + 1} \implies \frac{du}{dx} = 1 + \frac{x}{\sqrt{x^2 + 1}} \] Thus, \[ \frac{d}{dx} \left( \log(x + \sqrt{x^2 + 1}) \right) = \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} \] 4. **Combine Derivatives**: Now, substituting back into the derivative of \( y \): \[ y' = -\frac{1}{1 + x^2} - \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} \] 5. **Simplify the Expression**: To simplify, we find a common denominator: \[ y' = -\frac{1}{1 + x^2} - \frac{(1 + \frac{x}{\sqrt{x^2 + 1}})}{x + \sqrt{x^2 + 1}} \] Combine the terms: \[ y' = -\left( \frac{(x + \sqrt{x^2 + 1}) + (1 + \frac{x}{\sqrt{x^2 + 1}})(1 + x^2)}{(1 + x^2)(x + \sqrt{x^2 + 1})} \right) \] 6. **Analyze the Sign of \( y' \)**: The expression for \( y' \) is negative for all \( x \) because both components are negative. Hence, \( y' < 0 \) for all \( x \). 7. **Conclusion**: Since \( y' < 0 \) for all \( x \), the function \( y \) is decreasing in the interval \( (-\infty, \infty) \). ### Final Answer: The function \( y = \cot^{-1}(x) - \log(x + \sqrt{x^2 + 1}) \) is decreasing in the interval \( (-\infty, \infty) \).
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=cos(log(x+sqrt(x^2+1))) is :

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x) = sec[log(x + sqrt(1+x^2))] is

Show that f(x) = 2x + cot^-1 x + log(sqrt(1+x^2)-x) is increasing in R

Show that f(x) = 2x + cot^-1 x + log(sqrt(1+x^2)-x) is increasing in R

The function f(x)=sin(log(x+ sqrt(x^2+1))) ​

Show that f(x)=2x+cot^(-1)x+log(sqrt(1+x^2)-x) is increasing on R .

The function f(x)=log_(10)(x+sqrt(x^(2))+1) is

The graph of the function y = log_(a) (x + sqrt(x^(2) + 1)) is not symmetric about the origin.

If y= log (x+sqrt(x^2-1)) , then dy/dx=

OBJECTIVE RD SHARMA ENGLISH-INCREASING AND DECREASING FUNCTIONS-Exercise
  1. The function f(x)=(asinx+b cosx)/(c sinx+d cos x) is decreasing, if

    Text Solution

    |

  2. If f(x)=k x^3-9x^2+9x+3 monotonically increasing in R , then k<3 (b) ...

    Text Solution

    |

  3. Find the value of a for which the function (a+2)x^3-3a x^2+9a x-1 decr...

    Text Solution

    |

  4. The function y=x^3-3x^2+6x-17

    Text Solution

    |

  5. The interval in which the function x^3 increases less rapidly than 6x...

    Text Solution

    |

  6. The interval in which the function f(x)=sin x-cos x -ax +b decreases f...

    Text Solution

    |

  7. The function y=cot^(-1) x- log (x+sqrt(x^2+1)) is decreasing in

    Text Solution

    |

  8. the function(|x-1|)/(x^(2)) is monotonically decreasing at the point

    Text Solution

    |

  9. Find the value of a in order that f(x)=sqrt(3)sinx-cosx-2a x+b decreas...

    Text Solution

    |

  10. A function is matched below against an interval where it is supposed t...

    Text Solution

    |

  11. A condition for a function y=f(x) to have an inverse is that it should...

    Text Solution

    |

  12. Let g(x)=f(x)+f(1-x) and f''(x)<0, when x in (0,1). Then f(x) is

    Text Solution

    |

  13. The function f(x)=(ln(pi+x))/(ln(e+x)) is

    Text Solution

    |

  14. Column I, Column II int(e^(2x)-1)/(e^(2x)+1)dxi se q u a lto , p. x...

    Text Solution

    |

  15. y={x(x-3)^2 increases for all values of x lying in the interval

    Text Solution

    |

  16. If a lt 0 and f(x)=e^(ax )+ e^(-ax) is monotonically decreasing . F...

    Text Solution

    |

  17. The function f(x) = tanx - x

    Text Solution

    |

  18. The function f(x)=cot^(-1)x+x increases in the interval (a) (1,\ oo) ...

    Text Solution

    |

  19. The function f(x)=(log)e(x^3+sqrt(x^6+1)) is of the following types: (...

    Text Solution

    |

  20. Let f(x)=x^3-6x^2+15 x+3 . Then, (a) f(x)>0 for all x in R (b) f(x)>...

    Text Solution

    |