Home
Class 12
MATHS
If f(x)=x+(1)/(x), such that f^3 (x)=f(...

If `f(x)=x+(1)/(x)`, such that `f^3 (x)=f(x^(3))+lambdaf((1)/(x))`, then `lambda=`

A

1

B

3

C

-3

D

-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\lambda\) in the equation given by: \[ f^3(x) = f(x^3) + \lambda f\left(\frac{1}{x}\right) \] where \(f(x) = x + \frac{1}{x}\). ### Step 1: Calculate \(f^3(x)\) First, we need to compute \(f^3(x)\): \[ f^3(x) = \left(f(x)\right)^3 = \left(x + \frac{1}{x}\right)^3 \] Using the binomial expansion formula \((a + b)^3 = a^3 + b^3 + 3ab(a + b)\), we can expand this: \[ f^3(x) = x^3 + \left(\frac{1}{x}\right)^3 + 3\left(x\right)\left(\frac{1}{x}\right)\left(x + \frac{1}{x}\right) \] Calculating the individual components: - \(x^3\) - \(\left(\frac{1}{x}\right)^3 = \frac{1}{x^3}\) - \(3\left(x\right)\left(\frac{1}{x}\right) = 3\) Thus, we have: \[ f^3(x) = x^3 + \frac{1}{x^3} + 3\left(x + \frac{1}{x}\right) \] This can be rewritten as: \[ f^3(x) = x^3 + \frac{1}{x^3} + 3f(x) \] ### Step 2: Calculate \(f(x^3)\) and \(f\left(\frac{1}{x}\right)\) Next, we calculate \(f(x^3)\): \[ f(x^3) = x^3 + \frac{1}{x^3} \] Now, we calculate \(f\left(\frac{1}{x}\right)\): \[ f\left(\frac{1}{x}\right) = \frac{1}{x} + x = x + \frac{1}{x} = f(x) \] ### Step 3: Substitute into the equation Now we substitute \(f(x^3)\) and \(f\left(\frac{1}{x}\right)\) into the right-hand side of the original equation: \[ f^3(x) = f(x^3) + \lambda f\left(\frac{1}{x}\right) \] Substituting the values we found: \[ x^3 + \frac{1}{x^3} + 3f(x) = x^3 + \frac{1}{x^3} + \lambda f(x) \] ### Step 4: Compare both sides Now, we can compare both sides of the equation: The terms \(x^3 + \frac{1}{x^3}\) cancel out from both sides: \[ 3f(x) = \lambda f(x) \] ### Step 5: Solve for \(\lambda\) Assuming \(f(x) \neq 0\), we can divide both sides by \(f(x)\): \[ 3 = \lambda \] Thus, the value of \(\lambda\) is: \[ \lambda = 3 \] ### Final Answer \(\lambda = 3\)

To solve the problem, we need to find the value of \(\lambda\) in the equation given by: \[ f^3(x) = f(x^3) + \lambda f\left(\frac{1}{x}\right) \] where \(f(x) = x + \frac{1}{x}\). ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|95 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=x^3-1/(x^3) , show that f(x)+f(1/x)=0.

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=1/(f(x))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=-1/(f(x))

If f(x)=x+1/x , prove that [f(x)]^3=f(x^3)+3f(1/x)dot .

If f(x)=(1)/(3)x + 3 , then f^(-1)(x)=

If f_1(x)=x ,f_2(x)=1-x ,f_3(x)=1/x ,f_4(x)=1/(1-x),f_5(x)=x/(x-x),f_5(x)=x/(x-1), , f_6(x)=(x-1)/x suppose that f_6(f_m(x))=f_4(x) and f_n(f_4(x))=f_3(x), then m=5 (b) n=5 (c) m=6 (d) n=6

If f(x)=|x| then show that f'(3) =1

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)/(x))" then " f(x) can be

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. If f(x)=x+(1)/(x), such that f^3 (x)=f(x^(3))+lambdaf((1)/(x)), then ...

    Text Solution

    |

  2. The period of the function f(x)=sin^(4)3x+cos^(4)3x, is

    Text Solution

    |

  3. The value of integer n for which the function f(x)=(sinx)/(sin(x / n)...

    Text Solution

    |

  4. The period of the function f(x)=sin((2x+3)/(6pi)), is

    Text Solution

    |

  5. The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

    Text Solution

    |

  6. The domain of the function f(x)=log(10) (sqrt(x-4)+sqrt(6-x)) is :

    Text Solution

    |

  7. Let f(x)=(sqrt(sinx))/(1+(sinx)^(1/3)) then domain f contains

    Text Solution

    |

  8. If f : R -> R is defined by f(x) = [2x] - 2[x] for x in R, where [x] i...

    Text Solution

    |

  9. If N denotes the set of all positive integers and if f : N -> N is def...

    Text Solution

    |

  10. The set of value of a for which the function f(x)=sinx+[(x^(2))/(a)] d...

    Text Solution

    |

  11. If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt ...

    Text Solution

    |

  12. Find the equivalent definition of f(x)=max.{x^(2),(1-x)^(2),2x(1-x)...

    Text Solution

    |

  13. If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

    Text Solution

    |

  14. The function f(x) is defined in [0,1] . Find the domain of f(t a nx)do...

    Text Solution

    |

  15. The domain of definition of the real function f(x)=sqrt(log(12)x^(2)) ...

    Text Solution

    |

  16. The values of ba n dc for which the identity of f(x+1)-f(x)=8x+3 is sa...

    Text Solution

    |

  17. The function f(x)=sin""(pix)/(2)+2 cos ""(pix)/(3)-tan""(pix)/(4) is p...

    Text Solution

    |

  18. The period of the function sin""((pix)/(2))+cos((pix)/(2)), is

    Text Solution

    |

  19. If x in R, then f(x)=sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  20. If x in R , then f(x)=cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

    Text Solution

    |

  21. The equivalent definition of the function f(x)=lim(n to oo)(x^(n)-x^(-...

    Text Solution

    |