Home
Class 12
MATHS
If 3f(x)-f((1)/(x))= log(e) x^(4) for x ...

If `3f(x)-f((1)/(x))= log_(e) x^(4)` for `x gt 0` ,then
`f(e^(x))=`

A

x

B

`log_(e)x `

C

`e^(x)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3f(x) - f\left(\frac{1}{x}\right) = \log_e(x^4) \) for \( x > 0 \), we will follow these steps: ### Step 1: Simplify the Right Side First, we simplify the right side of the equation: \[ \log_e(x^4) = 4 \log_e(x) \] So the equation becomes: \[ 3f(x) - f\left(\frac{1}{x}\right) = 4 \log_e(x) \] ### Step 2: Substitute \( x \) with \( \frac{1}{x} \) Next, we substitute \( x \) with \( \frac{1}{x} \) in the original equation: \[ 3f\left(\frac{1}{x}\right) - f(x) = \log_e\left(\left(\frac{1}{x}\right)^4\right) \] This simplifies to: \[ 3f\left(\frac{1}{x}\right) - f(x) = \log_e\left(\frac{1}{x^4}\right) = -4 \log_e(x) \] ### Step 3: Set Up the System of Equations Now we have two equations: 1. \( 3f(x) - f\left(\frac{1}{x}\right) = 4 \log_e(x) \) (Equation 1) 2. \( 3f\left(\frac{1}{x}\right) - f(x) = -4 \log_e(x) \) (Equation 2) ### Step 4: Solve the System of Equations From Equation 1, we can express \( f\left(\frac{1}{x}\right) \): \[ f\left(\frac{1}{x}\right) = 3f(x) - 4 \log_e(x) \] Now substitute this expression into Equation 2: \[ 3(3f(x) - 4 \log_e(x)) - f(x) = -4 \log_e(x) \] This simplifies to: \[ 9f(x) - 12 \log_e(x) - f(x) = -4 \log_e(x) \] Combining like terms gives: \[ 8f(x) - 12 \log_e(x) = -4 \log_e(x) \] Adding \( 12 \log_e(x) \) to both sides: \[ 8f(x) = 8 \log_e(x) \] Dividing both sides by 8: \[ f(x) = \log_e(x) \] ### Step 5: Find \( f(e^x) \) Now we need to find \( f(e^x) \): \[ f(e^x) = \log_e(e^x) = x \] ### Final Answer Thus, the final answer is: \[ f(e^x) = x \] ---

To solve the equation \( 3f(x) - f\left(\frac{1}{x}\right) = \log_e(x^4) \) for \( x > 0 \), we will follow these steps: ### Step 1: Simplify the Right Side First, we simplify the right side of the equation: \[ \log_e(x^4) = 4 \log_e(x) \] So the equation becomes: ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|95 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)

If F(x) =int_(x^(2))^(x^(3)) log t dt (x gt 0) , then F'(x) equals

If f(x)=|log_(e) x|,then

Let f:[0,1] rarr R be a function.such that f(0)=f(1)=0 and f''(x)+f(x) ge e^x for all x in [0,1] .If the fucntion f(x)e^(-x) assumes its minimum in the interval [0,1] at x=1/4 which of the following is true ?

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

If f(x)=log_(x^(2))(logx) ,then f '(x)at x= e is

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x).

If f(x)=log_(x) (log x)," then find "f'(x) at x= e

Let f(x)=log_(e)|x-1|, x ne 1 , then the value of f'((1)/(2)) is

STATEMENT -1 : If f(x) = log_(x^(2)) (log x) , " then" f'( e) = 1/e STATEMENT -2 : If a gt 0 , b gt 0 and a ne b then log_(a) b = (log b)/(log a)

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. If 3f(x)-f((1)/(x))= log(e) x^(4) for x gt 0 ,then f(e^(x))=

    Text Solution

    |

  2. The period of the function f(x)=sin^(4)3x+cos^(4)3x, is

    Text Solution

    |

  3. The value of integer n for which the function f(x)=(sinx)/(sin(x / n)...

    Text Solution

    |

  4. The period of the function f(x)=sin((2x+3)/(6pi)), is

    Text Solution

    |

  5. The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

    Text Solution

    |

  6. The domain of the function f(x)=log(10) (sqrt(x-4)+sqrt(6-x)) is :

    Text Solution

    |

  7. Let f(x)=(sqrt(sinx))/(1+(sinx)^(1/3)) then domain f contains

    Text Solution

    |

  8. If f : R -> R is defined by f(x) = [2x] - 2[x] for x in R, where [x] i...

    Text Solution

    |

  9. If N denotes the set of all positive integers and if f : N -> N is def...

    Text Solution

    |

  10. The set of value of a for which the function f(x)=sinx+[(x^(2))/(a)] d...

    Text Solution

    |

  11. If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt ...

    Text Solution

    |

  12. Find the equivalent definition of f(x)=max.{x^(2),(1-x)^(2),2x(1-x)...

    Text Solution

    |

  13. If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

    Text Solution

    |

  14. The function f(x) is defined in [0,1] . Find the domain of f(t a nx)do...

    Text Solution

    |

  15. The domain of definition of the real function f(x)=sqrt(log(12)x^(2)) ...

    Text Solution

    |

  16. The values of ba n dc for which the identity of f(x+1)-f(x)=8x+3 is sa...

    Text Solution

    |

  17. The function f(x)=sin""(pix)/(2)+2 cos ""(pix)/(3)-tan""(pix)/(4) is p...

    Text Solution

    |

  18. The period of the function sin""((pix)/(2))+cos((pix)/(2)), is

    Text Solution

    |

  19. If x in R, then f(x)=sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  20. If x in R , then f(x)=cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

    Text Solution

    |

  21. The equivalent definition of the function f(x)=lim(n to oo)(x^(n)-x^(-...

    Text Solution

    |