Home
Class 12
MATHS
For x in R , x ne0, 1, let f(0)(x)=(1)...

For ` x in R , x ne0, 1, ` let `f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2…..` Then the value of `f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2))` is equal to

A

`(4)/(3)`

B

`(1)/(3)`

C

`(5)/(3)`

D

`(8)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f_{100}(3) + f_1\left(\frac{2}{3}\right) + f_2\left(\frac{3}{2}\right) \). ### Step 1: Define the functions We start with the function definitions: - \( f_0(x) = \frac{1}{1 - x} \) - \( f_{n+1}(x) = f_0(f_n(x)) \) ### Step 2: Calculate \( f_1(x) \) Using the definition of \( f_1(x) \): \[ f_1(x) = f_0(f_0(x)) = f_0\left(\frac{1}{1 - x}\right) \] Substituting into \( f_0 \): \[ f_1(x) = f_0\left(\frac{1}{1 - x}\right) = \frac{1}{1 - \frac{1}{1 - x}} = \frac{1 - x}{-x} = \frac{x - 1}{x} \] ### Step 3: Calculate \( f_2(x) \) Now, we calculate \( f_2(x) \): \[ f_2(x) = f_0(f_1(x)) = f_0\left(\frac{x - 1}{x}\right) \] Substituting into \( f_0 \): \[ f_2(x) = f_0\left(\frac{x - 1}{x}\right) = \frac{1}{1 - \frac{x - 1}{x}} = \frac{1}{\frac{1}{x}} = x \] ### Step 4: Calculate \( f_3(x) \) Next, we calculate \( f_3(x) \): \[ f_3(x) = f_0(f_2(x)) = f_0(x) \] Since \( f_2(x) = x \): \[ f_3(x) = f_0(x) = \frac{1}{1 - x} \] ### Step 5: Identify the pattern From the calculations, we can see a pattern: - \( f_0(x) = \frac{1}{1 - x} \) - \( f_1(x) = \frac{x - 1}{x} \) - \( f_2(x) = x \) - \( f_3(x) = \frac{1}{1 - x} \) This pattern repeats every three iterations: - \( f_{3n}(x) = f_0(x) \) - \( f_{3n+1}(x) = f_1(x) \) - \( f_{3n+2}(x) = f_2(x) \) ### Step 6: Calculate \( f_{100}(3) \) Since \( 100 \mod 3 = 1 \): \[ f_{100}(3) = f_1(3) = \frac{3 - 1}{3} = \frac{2}{3} \] ### Step 7: Calculate \( f_1\left(\frac{2}{3}\right) \) Using the formula for \( f_1(x) \): \[ f_1\left(\frac{2}{3}\right) = \frac{\frac{2}{3} - 1}{\frac{2}{3}} = \frac{-\frac{1}{3}}{\frac{2}{3}} = -\frac{1}{2} \] ### Step 8: Calculate \( f_2\left(\frac{3}{2}\right) \) Since \( f_2(x) = x \): \[ f_2\left(\frac{3}{2}\right) = \frac{3}{2} \] ### Step 9: Combine the results Now we can combine all the results: \[ f_{100}(3) + f_1\left(\frac{2}{3}\right) + f_2\left(\frac{3}{2}\right) = \frac{2}{3} - \frac{1}{2} + \frac{3}{2} \] ### Step 10: Simplify the expression Finding a common denominator (which is 6): \[ = \frac{4}{6} - \frac{3}{6} + \frac{9}{6} = \frac{4 - 3 + 9}{6} = \frac{10}{6} = \frac{5}{3} \] ### Final Answer The value of \( f_{100}(3) + f_1\left(\frac{2}{3}\right) + f_2\left(\frac{3}{2}\right) \) is \( \frac{5}{3} \).

To solve the problem, we need to find the value of \( f_{100}(3) + f_1\left(\frac{2}{3}\right) + f_2\left(\frac{3}{2}\right) \). ### Step 1: Define the functions We start with the function definitions: - \( f_0(x) = \frac{1}{1 - x} \) - \( f_{n+1}(x) = f_0(f_n(x)) \) ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|95 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f(x)-3f((1)/(x))=2x+3(x ne 0) then f(3) is equal to

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :

If f(x)=(1+x)^2, then the value of f(x0)+f^(prime)(0) +(f^(0))/(2!)+(f^(0))/(3!)+(f^n(0))/(n !)dot

If f(x)=(1+x)^2, then the value of f(x0)+f^(prime)(0) +(f^(0))/(2!)+(f^(0))/(3!)+(f^n(0))/(n !)dot

If f'(x)=(dx)/((1+x^(2))^(3//2)) and f(0)=0. then f(1) is equal to

If f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0), then find the value of sum_(r=1)^(2n1)2f(r/(2n))

if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) + ---+((-1)^n f''^--n times (1))/(n!)

For x in RR - {0, 1}, let f_1(x) =1/x, f_2(x) = 1-x and f_3(x) = 1/(1-x) be three given functions. If a function, J(x) satisfies (f_2oJ_of_1)(x) = f_3(x) then J(x) is equal to :

If f(x)=(1-x)^n, then the value of f(0)+f^(prime)(0)+(f^('')(0))/(2!)+(f^(''')(0))/(3!)+......(f^n(0))/(n !)dot

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. For x in R , x ne0, 1, let f(0)(x)=(1)/(1-x) and f(n+1)(x)=f(0)(f(n)...

    Text Solution

    |

  2. The period of the function f(x)=sin^(4)3x+cos^(4)3x, is

    Text Solution

    |

  3. The value of integer n for which the function f(x)=(sinx)/(sin(x / n)...

    Text Solution

    |

  4. The period of the function f(x)=sin((2x+3)/(6pi)), is

    Text Solution

    |

  5. The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

    Text Solution

    |

  6. The domain of the function f(x)=log(10) (sqrt(x-4)+sqrt(6-x)) is :

    Text Solution

    |

  7. Let f(x)=(sqrt(sinx))/(1+(sinx)^(1/3)) then domain f contains

    Text Solution

    |

  8. If f : R -> R is defined by f(x) = [2x] - 2[x] for x in R, where [x] i...

    Text Solution

    |

  9. If N denotes the set of all positive integers and if f : N -> N is def...

    Text Solution

    |

  10. The set of value of a for which the function f(x)=sinx+[(x^(2))/(a)] d...

    Text Solution

    |

  11. If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt ...

    Text Solution

    |

  12. Find the equivalent definition of f(x)=max.{x^(2),(1-x)^(2),2x(1-x)...

    Text Solution

    |

  13. If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

    Text Solution

    |

  14. The function f(x) is defined in [0,1] . Find the domain of f(t a nx)do...

    Text Solution

    |

  15. The domain of definition of the real function f(x)=sqrt(log(12)x^(2)) ...

    Text Solution

    |

  16. The values of ba n dc for which the identity of f(x+1)-f(x)=8x+3 is sa...

    Text Solution

    |

  17. The function f(x)=sin""(pix)/(2)+2 cos ""(pix)/(3)-tan""(pix)/(4) is p...

    Text Solution

    |

  18. The period of the function sin""((pix)/(2))+cos((pix)/(2)), is

    Text Solution

    |

  19. If x in R, then f(x)=sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  20. If x in R , then f(x)=cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

    Text Solution

    |

  21. The equivalent definition of the function f(x)=lim(n to oo)(x^(n)-x^(-...

    Text Solution

    |