Home
Class 12
MATHS
The domain (प्रांत ) of function f(x)=(...

The domain (प्रांत ) of function `f(x)=(cos^(-1)x)/( [x]);` `[x]=GIF` is:

A

`[-1,1]`

B

`[-1,1]-{0}`

C

`[-1,0) cup {1}`

D

`[-1, 0)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{\cos^{-1}(x)}{[x]} \), where \([x]\) denotes the greatest integer function (GIF), we need to analyze the restrictions imposed by both the numerator and the denominator. ### Step 1: Determine the domain of \( \cos^{-1}(x) \) The function \( \cos^{-1}(x) \) is defined for \( x \) in the interval \([-1, 1]\). Therefore, we have: \[ -1 \leq x \leq 1 \] **Hint:** The inverse cosine function is only defined for values between -1 and 1, inclusive. ### Step 2: Determine the restrictions from the greatest integer function \([x]\) The greatest integer function \([x]\) gives the largest integer less than or equal to \( x \). We need to ensure that \([x] \neq 0\) because it is in the denominator. The greatest integer function \([x]\) equals 0 when \( x \) is in the interval \([0, 1)\). Therefore, we must exclude this interval from our domain: \[ x \notin [0, 1) \] **Hint:** The greatest integer function equals zero for values in the interval [0, 1), so we must exclude this range. ### Step 3: Combine the restrictions From Step 1, we have \( -1 \leq x \leq 1 \). From Step 2, we exclude the interval \([0, 1)\). Thus, we need to find the intersection of these two conditions. The valid intervals for \( x \) are: 1. From \(-1\) to \(0\) (inclusive of -1, exclusive of 0). 2. The point \(1\) (since \(\cos^{-1}(1) = 0\) is valid). Thus, the combined domain is: \[ [-1, 0) \cup \{1\} \] ### Final Domain The final domain of the function \( f(x) \) is: \[ [-1, 0) \cup \{1\} \] ### Conclusion Thus, the correct option is: **Option C:** \([-1, 0) \cup \{1\}\)

To find the domain of the function \( f(x) = \frac{\cos^{-1}(x)}{[x]} \), where \([x]\) denotes the greatest integer function (GIF), we need to analyze the restrictions imposed by both the numerator and the denominator. ### Step 1: Determine the domain of \( \cos^{-1}(x) \) The function \( \cos^{-1}(x) \) is defined for \( x \) in the interval \([-1, 1]\). Therefore, we have: \[ -1 \leq x \leq 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|95 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)= cos^(-1)(x+[x]) is

The domain of the function f(x)=cos^(-1)((2-absx)/4) is

Find the domain of the function: f(x)=(sin^(-1)x)/x

Find the domain of the function f(x)=sin^(-1)(2x-3)

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The domain of the function f(x)=4sqrt(cos^(-1)((1-|x|)/(2))) is

The function, f(x) = cos^(-1) (cos x) is

The domain of the function f(x)=(1)/(sqrt(|x|-x) is

The domain of definition of f(x)=cos^(- 1)(x+[x]) is

The domain of the function f(x)=sqrt(sin x-1) is

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. The domain (प्रांत ) of function f(x)=(cos^(-1)x)/( [x]); [x]=GIF is:

    Text Solution

    |

  2. The period of the function f(x)=sin^(4)3x+cos^(4)3x, is

    Text Solution

    |

  3. The value of integer n for which the function f(x)=(sinx)/(sin(x / n)...

    Text Solution

    |

  4. The period of the function f(x)=sin((2x+3)/(6pi)), is

    Text Solution

    |

  5. The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

    Text Solution

    |

  6. The domain of the function f(x)=log(10) (sqrt(x-4)+sqrt(6-x)) is :

    Text Solution

    |

  7. Let f(x)=(sqrt(sinx))/(1+(sinx)^(1/3)) then domain f contains

    Text Solution

    |

  8. If f : R -> R is defined by f(x) = [2x] - 2[x] for x in R, where [x] i...

    Text Solution

    |

  9. If N denotes the set of all positive integers and if f : N -> N is def...

    Text Solution

    |

  10. The set of value of a for which the function f(x)=sinx+[(x^(2))/(a)] d...

    Text Solution

    |

  11. If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt ...

    Text Solution

    |

  12. Find the equivalent definition of f(x)=max.{x^(2),(1-x)^(2),2x(1-x)...

    Text Solution

    |

  13. If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

    Text Solution

    |

  14. The function f(x) is defined in [0,1] . Find the domain of f(t a nx)do...

    Text Solution

    |

  15. The domain of definition of the real function f(x)=sqrt(log(12)x^(2)) ...

    Text Solution

    |

  16. The values of ba n dc for which the identity of f(x+1)-f(x)=8x+3 is sa...

    Text Solution

    |

  17. The function f(x)=sin""(pix)/(2)+2 cos ""(pix)/(3)-tan""(pix)/(4) is p...

    Text Solution

    |

  18. The period of the function sin""((pix)/(2))+cos((pix)/(2)), is

    Text Solution

    |

  19. If x in R, then f(x)=sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  20. If x in R , then f(x)=cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

    Text Solution

    |

  21. The equivalent definition of the function f(x)=lim(n to oo)(x^(n)-x^(-...

    Text Solution

    |