Home
Class 12
MATHS
Find domain of the function f(x)=1/(log1...

Find domain of the function `f(x)=1/(log_10 (1-x)) +sqrt(x+2)`

A

`[-2,1) `

B

`[-2,oo)`

C

`(-oo,1)`

D

`[-2,0) cup (0,1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2} \), we need to determine the values of \( x \) for which both components of the function are defined. ### Step 1: Analyze the first component \( g(x) = \frac{1}{\log_{10}(1-x)} \) 1. **Logarithm Condition**: The logarithm is defined only for positive arguments. Therefore, we need: \[ 1 - x > 0 \implies x < 1 \] 2. **Denominator Condition**: The logarithm cannot be zero because it is in the denominator. Thus, we need: \[ \log_{10}(1-x) \neq 0 \implies 1 - x \neq 1 \implies x \neq 0 \] Combining these conditions, we find that the domain of \( g(x) \) is: \[ (-\infty, 1) \setminus \{0\} \] ### Step 2: Analyze the second component \( h(x) = \sqrt{x+2} \) 1. **Square Root Condition**: The expression inside the square root must be non-negative: \[ x + 2 \geq 0 \implies x \geq -2 \] Thus, the domain of \( h(x) \) is: \[ [-2, \infty) \] ### Step 3: Find the intersection of the domains Now, we need to find the intersection of the domains of \( g(x) \) and \( h(x) \): - Domain of \( g(x) \): \( (-\infty, 1) \setminus \{0\} \) - Domain of \( h(x) \): \( [-2, \infty) \) The intersection can be found as follows: 1. The interval \( (-\infty, 1) \) intersects with \( [-2, \infty) \) as \( [-2, 1) \). 2. We must exclude \( 0 \) from this interval. Thus, the intersection is: \[ [-2, 0) \cup (0, 1) \] ### Conclusion The domain of the function \( f(x) \) is: \[ [-2, 0) \cup (0, 1) \]

To find the domain of the function \( f(x) = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2} \), we need to determine the values of \( x \) for which both components of the function are defined. ### Step 1: Analyze the first component \( g(x) = \frac{1}{\log_{10}(1-x)} \) 1. **Logarithm Condition**: The logarithm is defined only for positive arguments. Therefore, we need: \[ 1 - x > 0 \implies x < 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|95 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Domain of the function f(x)=(1)/(log(2-x)) is

Find the domain of following function: f(x)=1/(log(2-x))+sqrt(x+1)

The domain of the function f(x)=sqrt(-log_(0.3) (x-1))/(sqrt(-x^(2)+2x+8))" is"

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

The domain of the function f(x) = log_10 log_10 (1 + x ^3) is

Find the domain of each of the following functions: f(x)=1/(log_(10)(1-x))+sqrt(x+2)

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

The domain of the function f(x)=sqrt(-log_.3 (x-1))/(sqrt(x^2+2x+8)) is

The domain of definition of the function y=1/((log)_(10)(1-x))+sqrt(x+2) is

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. Find domain of the function f(x)=1/(log10 (1-x)) +sqrt(x+2)

    Text Solution

    |

  2. The period of the function f(x)=sin^(4)3x+cos^(4)3x, is

    Text Solution

    |

  3. The value of integer n for which the function f(x)=(sinx)/(sin(x / n)...

    Text Solution

    |

  4. The period of the function f(x)=sin((2x+3)/(6pi)), is

    Text Solution

    |

  5. The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

    Text Solution

    |

  6. The domain of the function f(x)=log(10) (sqrt(x-4)+sqrt(6-x)) is :

    Text Solution

    |

  7. Let f(x)=(sqrt(sinx))/(1+(sinx)^(1/3)) then domain f contains

    Text Solution

    |

  8. If f : R -> R is defined by f(x) = [2x] - 2[x] for x in R, where [x] i...

    Text Solution

    |

  9. If N denotes the set of all positive integers and if f : N -> N is def...

    Text Solution

    |

  10. The set of value of a for which the function f(x)=sinx+[(x^(2))/(a)] d...

    Text Solution

    |

  11. If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt ...

    Text Solution

    |

  12. Find the equivalent definition of f(x)=max.{x^(2),(1-x)^(2),2x(1-x)...

    Text Solution

    |

  13. If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

    Text Solution

    |

  14. The function f(x) is defined in [0,1] . Find the domain of f(t a nx)do...

    Text Solution

    |

  15. The domain of definition of the real function f(x)=sqrt(log(12)x^(2)) ...

    Text Solution

    |

  16. The values of ba n dc for which the identity of f(x+1)-f(x)=8x+3 is sa...

    Text Solution

    |

  17. The function f(x)=sin""(pix)/(2)+2 cos ""(pix)/(3)-tan""(pix)/(4) is p...

    Text Solution

    |

  18. The period of the function sin""((pix)/(2))+cos((pix)/(2)), is

    Text Solution

    |

  19. If x in R, then f(x)=sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  20. If x in R , then f(x)=cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

    Text Solution

    |

  21. The equivalent definition of the function f(x)=lim(n to oo)(x^(n)-x^(-...

    Text Solution

    |