Home
Class 12
MATHS
Let f be a real valued periodic function...

Let f be a real valued periodic function defined for all real numbers x such that for some fixed ` a gt 0` , `f(x+a)=(1)/(2)+sqrt(f(x)-{f(x)}^(2))` for all x .
Then , the period of f(x) is

A

a

B

2a

C

3a

D

4a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the period of the function \( f(x) \) defined by the equation: \[ f(x + a) = \frac{1}{2} + \sqrt{f(x) - f(x)^2} \] for some fixed \( a > 0 \). ### Step 1: Analyze the given functional equation We start with the given equation: \[ f(x + a) = \frac{1}{2} + \sqrt{f(x) - f(x)^2} \] Let's denote this as **Equation (1)**. ### Step 2: Substitute \( x \) with \( x + a \) Next, we substitute \( x \) with \( x + a \) in Equation (1): \[ f((x + a) + a) = f(x + 2a) = \frac{1}{2} + \sqrt{f(x + a) - f(x + a)^2} \] Now, we need to replace \( f(x + a) \) using Equation (1): \[ f(x + 2a) = \frac{1}{2} + \sqrt{\left(\frac{1}{2} + \sqrt{f(x) - f(x)^2}\right) - \left(\frac{1}{2} + \sqrt{f(x) - f(x)^2}\right)^2} \] ### Step 3: Simplify the expression Now, we simplify the expression for \( f(x + 2a) \): Let \( y = f(x) \). Then, we have: \[ f(x + a) = \frac{1}{2} + \sqrt{y - y^2} \] Substituting this into the expression for \( f(x + 2a) \): \[ f(x + 2a) = \frac{1}{2} + \sqrt{\left(\frac{1}{2} + \sqrt{y - y^2}\right) - \left(\frac{1}{2} + \sqrt{y - y^2}\right)^2} \] ### Step 4: Find \( f(x + 2a) \) To find \( f(x + 2a) \), we recognize that we can express it in terms of \( f(x) \): After simplification, we can find that: \[ f(x + 2a) = f(x) \] This implies that the function \( f(x) \) is periodic with period \( 2a \). ### Conclusion Thus, the period of the function \( f(x) \) is: \[ \text{Period} = 2a \]

To solve the problem, we need to find the period of the function \( f(x) \) defined by the equation: \[ f(x + a) = \frac{1}{2} + \sqrt{f(x) - f(x)^2} \] for some fixed \( a > 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|95 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Let f be a real valued function defined by f(x)=x^2+1. Find f'(2) .

If f(x)=2 for all real numbers x, then f(x+2)=

Let be a real valued function defined by f(x) =e +e^x , then the range of f(x) is :

Let f be a real-valued function defined by f(x) = 3x^(2) + 2x + 5 Find f'(1).

Let f(x) be a real valued periodic function with domain R such that f(x+p)=1+[2-3f(x)+3(f(x))^(2)-(f(x))^(3)]^(1//3) hold good for all x in R and some positive constant p, then the periodic of f(x) is

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . Then , sum_(k=1)^(n) f(k)=

Let f be a real - valued function defined on R ( the set of real numbers) such that f(x) = sin^(-1) ( sin x) + cos^(-1) ( cos x) The value of f(10) is equal to

Let f(x) be a real valued function defined for all xge1 , satistying f(1)=1 and f'(x)=1/(x^(2)+f(x)) , then lim_(xtooo)f(x)

Let f be a real vlaued fuction with domain R such that f(x+1)+f(x-1)=sqrt(2)f(x) for all x in R , then ,

If f(x) is a real-valued function defined as f(x)=In (1-sinx), then the graph of f(x) is

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. Let f be a real valued periodic function defined for all real numbers ...

    Text Solution

    |

  2. The period of the function f(x)=sin^(4)3x+cos^(4)3x, is

    Text Solution

    |

  3. The value of integer n for which the function f(x)=(sinx)/(sin(x / n)...

    Text Solution

    |

  4. The period of the function f(x)=sin((2x+3)/(6pi)), is

    Text Solution

    |

  5. The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

    Text Solution

    |

  6. The domain of the function f(x)=log(10) (sqrt(x-4)+sqrt(6-x)) is :

    Text Solution

    |

  7. Let f(x)=(sqrt(sinx))/(1+(sinx)^(1/3)) then domain f contains

    Text Solution

    |

  8. If f : R -> R is defined by f(x) = [2x] - 2[x] for x in R, where [x] i...

    Text Solution

    |

  9. If N denotes the set of all positive integers and if f : N -> N is def...

    Text Solution

    |

  10. The set of value of a for which the function f(x)=sinx+[(x^(2))/(a)] d...

    Text Solution

    |

  11. If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt ...

    Text Solution

    |

  12. Find the equivalent definition of f(x)=max.{x^(2),(1-x)^(2),2x(1-x)...

    Text Solution

    |

  13. If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

    Text Solution

    |

  14. The function f(x) is defined in [0,1] . Find the domain of f(t a nx)do...

    Text Solution

    |

  15. The domain of definition of the real function f(x)=sqrt(log(12)x^(2)) ...

    Text Solution

    |

  16. The values of ba n dc for which the identity of f(x+1)-f(x)=8x+3 is sa...

    Text Solution

    |

  17. The function f(x)=sin""(pix)/(2)+2 cos ""(pix)/(3)-tan""(pix)/(4) is p...

    Text Solution

    |

  18. The period of the function sin""((pix)/(2))+cos((pix)/(2)), is

    Text Solution

    |

  19. If x in R, then f(x)=sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  20. If x in R , then f(x)=cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

    Text Solution

    |

  21. The equivalent definition of the function f(x)=lim(n to oo)(x^(n)-x^(-...

    Text Solution

    |