Home
Class 12
MATHS
Identify the correct statement the funda...

Identify the correct statement the fundamental period of `f(x)=cos(sinx)+cos(cosx)` is `pi`

A

`pi`

B

`2pi`

C

`pi//2`

D

`4pi`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the fundamental period of the function \( f(x) = \cos(\sin x) + \cos(\cos x) \), we will follow these steps: ### Step 1: Understand the definition of the fundamental period The fundamental period \( T \) of a function \( f(x) \) is the smallest positive value such that: \[ f(x + T) = f(x) \quad \text{for all } x. \] ### Step 2: Check if \( T = \pi \) is a period We need to evaluate \( f(x + \pi) \): \[ f(x + \pi) = \cos(\sin(x + \pi)) + \cos(\cos(x + \pi)). \] Using the properties of sine and cosine: - \( \sin(x + \pi) = -\sin x \) - \( \cos(x + \pi) = -\cos x \) Thus, we have: \[ f(x + \pi) = \cos(-\sin x) + \cos(-\cos x). \] Using the even property of cosine, we get: \[ f(x + \pi) = \cos(\sin x) + \cos(\cos x) = f(x). \] This shows that \( f(x) \) is periodic with period \( \pi \). ### Step 3: Check if \( T = \pi \) is the least period Next, we need to check if there is a smaller period, such as \( T = \frac{\pi}{2} \): \[ f(x + \frac{\pi}{2}) = \cos(\sin(x + \frac{\pi}{2})) + \cos(\cos(x + \frac{\pi}{2})). \] Using the properties: - \( \sin(x + \frac{\pi}{2}) = \cos x \) - \( \cos(x + \frac{\pi}{2}) = -\sin x \) Thus, we have: \[ f(x + \frac{\pi}{2}) = \cos(\cos x) + \cos(-\sin x). \] Using the even property of cosine again: \[ f(x + \frac{\pi}{2}) = \cos(\cos x) + \cos(\sin x). \] This is not equal to \( f(x) \), which means \( f(x + \frac{\pi}{2}) \neq f(x) \). ### Conclusion Since \( f(x + \pi) = f(x) \) and there is no smaller period that satisfies the periodic condition, we conclude that the fundamental period of \( f(x) \) is indeed \( \pi \). ### Final Answer The statement that the fundamental period of \( f(x) = \cos(\sin x) + \cos(\cos x) \) is \( \pi \) is **correct**. ---

To determine the fundamental period of the function \( f(x) = \cos(\sin x) + \cos(\cos x) \), we will follow these steps: ### Step 1: Understand the definition of the fundamental period The fundamental period \( T \) of a function \( f(x) \) is the smallest positive value such that: \[ f(x + T) = f(x) \quad \text{for all } x. \] ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|95 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The period of f(x)=cos(abs(sinx)-abs(cosx)) is

Find the period of f(x)=abs(sinx)+abs(cosx) .

What is the fundamental period of f(x) = (sin x+ sin 3x)/(cos x+ cos 3x)

What is the fundamental period of f(x) = (sin x+ sin 3x)/(cos x+ cos 3x)

Find the period of "cos"(cosx)+cos(sinx)dot

Find the fundamental period of the following function: f(x)=1/(1-cosx)

Find the fundamental period of the following function: f(x)=2+3cos(x-2)

Find the period of the following functions: f(x)=cos(sinx)+cos(cosx)

The period of the function f(x)=|sinx|-|cosx| , is

If f(x) and g(x) are periodic functions with the same fundamental period where f(x)=sinalpha x+cos alpha x and g(x)=|sinx|+|cosx| , then alpha is equal to (1) 0 (2) 2 (3) 4 (4) 8

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. Identify the correct statement the fundamental period of f(x)=cos(sinx...

    Text Solution

    |

  2. The period of the function f(x)=sin^(4)3x+cos^(4)3x, is

    Text Solution

    |

  3. The value of integer n for which the function f(x)=(sinx)/(sin(x / n)...

    Text Solution

    |

  4. The period of the function f(x)=sin((2x+3)/(6pi)), is

    Text Solution

    |

  5. The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

    Text Solution

    |

  6. The domain of the function f(x)=log(10) (sqrt(x-4)+sqrt(6-x)) is :

    Text Solution

    |

  7. Let f(x)=(sqrt(sinx))/(1+(sinx)^(1/3)) then domain f contains

    Text Solution

    |

  8. If f : R -> R is defined by f(x) = [2x] - 2[x] for x in R, where [x] i...

    Text Solution

    |

  9. If N denotes the set of all positive integers and if f : N -> N is def...

    Text Solution

    |

  10. The set of value of a for which the function f(x)=sinx+[(x^(2))/(a)] d...

    Text Solution

    |

  11. If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt ...

    Text Solution

    |

  12. Find the equivalent definition of f(x)=max.{x^(2),(1-x)^(2),2x(1-x)...

    Text Solution

    |

  13. If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

    Text Solution

    |

  14. The function f(x) is defined in [0,1] . Find the domain of f(t a nx)do...

    Text Solution

    |

  15. The domain of definition of the real function f(x)=sqrt(log(12)x^(2)) ...

    Text Solution

    |

  16. The values of ba n dc for which the identity of f(x+1)-f(x)=8x+3 is sa...

    Text Solution

    |

  17. The function f(x)=sin""(pix)/(2)+2 cos ""(pix)/(3)-tan""(pix)/(4) is p...

    Text Solution

    |

  18. The period of the function sin""((pix)/(2))+cos((pix)/(2)), is

    Text Solution

    |

  19. If x in R, then f(x)=sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  20. If x in R , then f(x)=cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

    Text Solution

    |

  21. The equivalent definition of the function f(x)=lim(n to oo)(x^(n)-x^(-...

    Text Solution

    |