Home
Class 12
MATHS
The period of the fuction f(x)=sin"...

The period of the fuction
` f(x)=sin""((pix)/(n!))+ cos((pix)/((n+1)!))` , is

A

`2xx(n+1)!`

B

`2(n!)`

C

`n+1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \[ f(x) = \sin\left(\frac{\pi x}{n!}\right) + \cos\left(\frac{\pi x}{(n+1)!}\right), \] we will analyze the periods of the individual components of the function. ### Step 1: Determine the period of \(\sin\left(\frac{\pi x}{n!}\right)\) The standard period of \(\sin(x)\) is \(2\pi\). When we have \(\sin(kx)\), the period becomes: \[ \text{Period} = \frac{2\pi}{|k|}. \] In our case, \(k = \frac{\pi}{n!}\). Therefore, the period of \(\sin\left(\frac{\pi x}{n!}\right)\) is: \[ \text{Period} = \frac{2\pi}{\left|\frac{\pi}{n!}\right|} = \frac{2\pi \cdot n!}{\pi} = 2n!. \] ### Step 2: Determine the period of \(\cos\left(\frac{\pi x}{(n+1)!}\right)\) Similarly, the standard period of \(\cos(x)\) is also \(2\pi\). For \(\cos(kx)\), the period is given by: \[ \text{Period} = \frac{2\pi}{|k|}. \] Here, \(k = \frac{\pi}{(n+1)!}\). Thus, the period of \(\cos\left(\frac{\pi x}{(n+1)!}\right)\) is: \[ \text{Period} = \frac{2\pi}{\left|\frac{\pi}{(n+1)!}\right|} = \frac{2\pi \cdot (n+1)!}{\pi} = 2(n+1)!. \] ### Step 3: Find the least common multiple (LCM) of the two periods Now, we need to find the least common multiple (LCM) of the two periods we calculated: 1. Period of \(\sin\left(\frac{\pi x}{n!}\right) = 2n!\) 2. Period of \(\cos\left(\frac{\pi x}{(n+1)!}\right) = 2(n+1)!\) The LCM of \(2n!\) and \(2(n+1)!\) can be calculated as follows: \[ \text{LCM}(2n!, 2(n+1)!) = 2 \cdot \text{LCM}(n!, (n+1)!). \] Since \((n+1)! = (n+1) \cdot n!\), we have: \[ \text{LCM}(n!, (n+1)!) = (n+1)!. \] Thus, \[ \text{LCM}(2n!, 2(n+1)!) = 2(n+1)!. \] ### Conclusion The period of the function \(f(x)\) is: \[ \text{Period of } f(x) = 2(n+1)!. \]

To find the period of the function \[ f(x) = \sin\left(\frac{\pi x}{n!}\right) + \cos\left(\frac{\pi x}{(n+1)!}\right), \] we will analyze the periods of the individual components of the function. ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|95 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The period of the function sin""((pix)/(2))+cos((pix)/(2)) , is

Find the period of f(x)=sin((pix)/(n !))-cos((pix)/((n+1)!))

The period of f(x)=sin""(2pix)/(3)+ cos""(pix)/(2) , is

The period of f(x)=sin((pix)/(n-1))+ cos ((pix)/(n)), n in Z, n gt 2 , is

What is the range of the function f(x)=5-6sin(pix+1) ?

Find the fundamental period of the following function: f(x)="sin" (pix)/4+"sin"(pix)/3

The function f(x)=sin""(pix)/(2)+2 cos ""(pix)/(3)-tan""(pix)/(4) is periodic with period

The number of solutions of the equation |"sin" (pix)/2+"cos"(pix)/2|=sqrt((In|x|)^(3)+1) is

period the function f(x)=(sin{sin(n x)})/(tan (x/n)) , n in N, is 6pi then n= --------

Find the period of (a) (|sin4x|+|cos 4x|)/(|sin 4x-cos 4x|+|sin 4x+cos 4x|) (b) f(x)="sin"(pi x)/(n!)-"cos"(pi x)/((n+1)!) (c ) f(x)=sin x +"tan"(x)/(2)+"sin"(x)/(2^(2))+"tan"(x)/(2^(3))+ ... +"sin"(x)/(2^(n-1))+"tan"(x)/(2^(n))

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. The period of the fuction f(x)=sin""((pix)/(n!))+ cos((pix)/((n+1...

    Text Solution

    |

  2. The period of the function f(x)=sin^(4)3x+cos^(4)3x, is

    Text Solution

    |

  3. The value of integer n for which the function f(x)=(sinx)/(sin(x / n)...

    Text Solution

    |

  4. The period of the function f(x)=sin((2x+3)/(6pi)), is

    Text Solution

    |

  5. The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

    Text Solution

    |

  6. The domain of the function f(x)=log(10) (sqrt(x-4)+sqrt(6-x)) is :

    Text Solution

    |

  7. Let f(x)=(sqrt(sinx))/(1+(sinx)^(1/3)) then domain f contains

    Text Solution

    |

  8. If f : R -> R is defined by f(x) = [2x] - 2[x] for x in R, where [x] i...

    Text Solution

    |

  9. If N denotes the set of all positive integers and if f : N -> N is def...

    Text Solution

    |

  10. The set of value of a for which the function f(x)=sinx+[(x^(2))/(a)] d...

    Text Solution

    |

  11. If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt ...

    Text Solution

    |

  12. Find the equivalent definition of f(x)=max.{x^(2),(1-x)^(2),2x(1-x)...

    Text Solution

    |

  13. If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

    Text Solution

    |

  14. The function f(x) is defined in [0,1] . Find the domain of f(t a nx)do...

    Text Solution

    |

  15. The domain of definition of the real function f(x)=sqrt(log(12)x^(2)) ...

    Text Solution

    |

  16. The values of ba n dc for which the identity of f(x+1)-f(x)=8x+3 is sa...

    Text Solution

    |

  17. The function f(x)=sin""(pix)/(2)+2 cos ""(pix)/(3)-tan""(pix)/(4) is p...

    Text Solution

    |

  18. The period of the function sin""((pix)/(2))+cos((pix)/(2)), is

    Text Solution

    |

  19. If x in R, then f(x)=sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  20. If x in R , then f(x)=cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

    Text Solution

    |

  21. The equivalent definition of the function f(x)=lim(n to oo)(x^(n)-x^(-...

    Text Solution

    |