Home
Class 12
MATHS
f(x)={(4, xlt-1) ,(-4x,-1lt=xlt=0):} If...

`f(x)={(4, xlt-1) ,(-4x,-1lt=xlt=0):}` If `f(x)` is an even function in R then the definition of `f(x)` in `(0,oo)` is: (A) `f(x)={(4x, 0ltxle1),(4, xgt1):}` (B) `f(x)={(4x, 0ltxle1),(-4, xgt1):}` (C) `f(x)={(4, 0ltxle1),(4x, xgt1):}` (D) `f(x)={(4, xlt-1),(-4x, -1lexle0):}`

A

`f(x)={:(4x, 0 lt x le 1),(4, x gt 1):}`

B

`f(x)={{:(4x, 0 lt x le1),(-4, x gt 1):}`

C

`f(x)={{:(4, 0 lt x le 1),(4x,x gt 1):}`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the definition of \( f(x) \) in the interval \( (0, \infty) \) given that \( f(x) \) is an even function, we start by analyzing the provided piecewise function: 1. **Given Function**: \[ f(x) = \begin{cases} 4 & \text{if } x < -1 \\ -4x & \text{if } -1 \leq x < 0 \end{cases} \] 2. **Understanding Even Functions**: An even function satisfies the property \( f(x) = f(-x) \) for all \( x \). This means that the function's values for positive inputs must mirror the values for their corresponding negative inputs. 3. **Finding \( f(x) \) for \( x \in (0, \infty) \)**: - For \( x < 0 \): - When \( -1 \leq x < 0 \), \( f(x) = -4x \). - Therefore, \( f(-x) = -4(-x) = 4x \) for \( 0 < x \leq 1 \). - For \( x < -1 \): - Here, \( f(x) = 4 \). - Thus, \( f(-x) = 4 \) for \( x > 1 \). 4. **Constructing the Function in \( (0, \infty) \)**: - From the above analysis, we can conclude: - For \( 0 < x \leq 1 \), \( f(x) = 4x \). - For \( x > 1 \), \( f(x) = 4 \). 5. **Final Piecewise Definition**: Therefore, the definition of \( f(x) \) in the interval \( (0, \infty) \) is: \[ f(x) = \begin{cases} 4x & \text{if } 0 < x \leq 1 \\ 4 & \text{if } x > 1 \end{cases} \] 6. **Selecting the Correct Option**: Among the given options, this matches with: (A) \( f(x) = \{(4x, 0 < x \leq 1), (4, x > 1)\} \).

To determine the definition of \( f(x) \) in the interval \( (0, \infty) \) given that \( f(x) \) is an even function, we start by analyzing the provided piecewise function: 1. **Given Function**: \[ f(x) = \begin{cases} 4 & \text{if } x < -1 \\ -4x & \text{if } -1 \leq x < 0 ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|95 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(x+4,xge1) ,(5x,xlt1):} then f'(x)=?

If f(x)={{:(x",",0lexle1),(x+a",",xgt1):} then

Let f(x)={(x+1, -1lexle0),(-x,0ltxle1):} then

If f(x)={{:(5x-4",",0ltxle1),(4x^(2)+3ax",",1ltxlt2):}

Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then

Let f(x)={(x+1,xle4),(2x+1,4ltxle9),(-x+7,xgt9):} and g(x)={(x^(2),-1lexlt3),(x+2,3lexle5):} then, find f(g(x)) .

If f(x)={(x^(2),xle1),(1-x,xgt1):} & composite function h(x)=|f(x)|+f(x+2) , then

If f(x)=max{x^3, x^2,1/(64)}AAx in [0,oo),t h e n f(x)={x^2,0lt=xlt=1x^3,x > 0 f(x) = { 1/(64), 0 lt= x lt = 1/4 x^2, 1/4 1 f(x)={1/(64),0lt=xlt=1/8x^2,1/8 1 f(x)={1/(64),0lt=xlt=1/8x^3,x >1/8

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. f(x)={(4, xlt-1) ,(-4x,-1lt=xlt=0):} If f(x) is an even function in R...

    Text Solution

    |

  2. The period of the function f(x)=sin^(4)3x+cos^(4)3x, is

    Text Solution

    |

  3. The value of integer n for which the function f(x)=(sinx)/(sin(x / n)...

    Text Solution

    |

  4. The period of the function f(x)=sin((2x+3)/(6pi)), is

    Text Solution

    |

  5. The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

    Text Solution

    |

  6. The domain of the function f(x)=log(10) (sqrt(x-4)+sqrt(6-x)) is :

    Text Solution

    |

  7. Let f(x)=(sqrt(sinx))/(1+(sinx)^(1/3)) then domain f contains

    Text Solution

    |

  8. If f : R -> R is defined by f(x) = [2x] - 2[x] for x in R, where [x] i...

    Text Solution

    |

  9. If N denotes the set of all positive integers and if f : N -> N is def...

    Text Solution

    |

  10. The set of value of a for which the function f(x)=sinx+[(x^(2))/(a)] d...

    Text Solution

    |

  11. If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt ...

    Text Solution

    |

  12. Find the equivalent definition of f(x)=max.{x^(2),(1-x)^(2),2x(1-x)...

    Text Solution

    |

  13. If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

    Text Solution

    |

  14. The function f(x) is defined in [0,1] . Find the domain of f(t a nx)do...

    Text Solution

    |

  15. The domain of definition of the real function f(x)=sqrt(log(12)x^(2)) ...

    Text Solution

    |

  16. The values of ba n dc for which the identity of f(x+1)-f(x)=8x+3 is sa...

    Text Solution

    |

  17. The function f(x)=sin""(pix)/(2)+2 cos ""(pix)/(3)-tan""(pix)/(4) is p...

    Text Solution

    |

  18. The period of the function sin""((pix)/(2))+cos((pix)/(2)), is

    Text Solution

    |

  19. If x in R, then f(x)=sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  20. If x in R , then f(x)=cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

    Text Solution

    |

  21. The equivalent definition of the function f(x)=lim(n to oo)(x^(n)-x^(-...

    Text Solution

    |