Home
Class 12
MATHS
Let the function f(x)=4 sinx+3 cos x+...

Let the function
`f(x)=4 sinx+3 cos x+ log (|x|+sqrt(1+x^(2)))` be defined on the interval [0,1]. The odd extension of f(x) to the inteval `[-1,1]` is

A

`4 sin x+ 3 cos x+log(|x|+sqrt(1+x^(2))), -1 lex lt 0`

B

`4 sin x- 3 cos x-log(|x|+sqrt(1+x^(2))), -1 lex lt 0`

C

`4 sin x+ 3 cos x+log(|x|+sqrt(1+x^(2))), -1 lex lt 0`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the odd extension of the function \( f(x) = 4 \sin x + 3 \cos x + \log(|x| + \sqrt{1 + x^2}) \) defined on the interval \([0, 1]\), we will follow these steps: ### Step 1: Define the odd extension The odd extension \( g(x) \) of a function \( f(x) \) defined on an interval can be expressed as: \[ g(x) = \begin{cases} f(x) & \text{if } x \in [0, 1] \\ -f(-x) & \text{if } x \in [-1, 0] \end{cases} \] ### Step 2: Determine \( g(x) \) for \( x \in [0, 1] \) For \( x \in [0, 1] \), we have: \[ g(x) = f(x) = 4 \sin x + 3 \cos x + \log(|x| + \sqrt{1 + x^2}) \] ### Step 3: Calculate \( g(x) \) for \( x \in [-1, 0] \) For \( x \in [-1, 0] \), we need to compute \( -f(-x) \): \[ g(x) = -f(-x) = -\left(4 \sin(-x) + 3 \cos(-x) + \log(|-x| + \sqrt{1 + (-x)^2})\right) \] ### Step 4: Simplify \( f(-x) \) Using the properties of sine and cosine: \[ \sin(-x) = -\sin x \quad \text{and} \quad \cos(-x) = \cos x \] Thus, \[ f(-x) = 4(-\sin x) + 3\cos x + \log(|-x| + \sqrt{1 + x^2}) = -4 \sin x + 3 \cos x + \log(|x| + \sqrt{1 + x^2}) \] ### Step 5: Substitute \( f(-x) \) back into \( g(x) \) Now substituting \( f(-x) \) into the equation for \( g(x) \): \[ g(x) = -(-4 \sin x + 3 \cos x + \log(|x| + \sqrt{1 + x^2})) \] This simplifies to: \[ g(x) = 4 \sin x - 3 \cos x - \log(|x| + \sqrt{1 + x^2}) \] ### Final Form of \( g(x) \) Combining both cases, we have: \[ g(x) = \begin{cases} 4 \sin x + 3 \cos x + \log(|x| + \sqrt{1 + x^2}) & \text{if } x \in [0, 1] \\ 4 \sin x - 3 \cos x - \log(|x| + \sqrt{1 + x^2}) & \text{if } x \in [-1, 0] \end{cases} \] ### Summary Thus, the odd extension of the function \( f(x) \) to the interval \([-1, 1]\) is: \[ g(x) = \begin{cases} 4 \sin x + 3 \cos x + \log(|x| + \sqrt{1 + x^2}) & \text{if } x \in [0, 1] \\ 4 \sin x - 3 \cos x - \log(|x| + \sqrt{1 + x^2}) & \text{if } x \in [-1, 0] \end{cases} \]

To find the odd extension of the function \( f(x) = 4 \sin x + 3 \cos x + \log(|x| + \sqrt{1 + x^2}) \) defined on the interval \([0, 1]\), we will follow these steps: ### Step 1: Define the odd extension The odd extension \( g(x) \) of a function \( f(x) \) defined on an interval can be expressed as: \[ g(x) = \begin{cases} f(x) & \text{if } x \in [0, 1] \\ ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|95 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Let the function f(x)=x^(2)+x+sinx- cosx+log(1+|x|) be defined on the interval [0,1]. The odd extension of f(x) to the interval [-1,1] is

Let the function f(x)=3x^(2)-4x+8log(1+|x|) be defined on the interval [0,1]. The even extension of f(x) to the interval [0,1]. The even extension of f(x) to the interval [-1,1] is

The function f (x) =1+ x ln (x+ sqrt(1+ x ^(2)))-sqrt(1- x^(2)) is:

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x)=sin(log(x+ sqrt(x^2+1))) ​

The function f(x)=sqrt(cos(sinx))+sin^-1((1+x^2)/(2x)) is defined for :

The function f(x)=cos(log(x+sqrt(x^2+1))) is :

Show that the function f(x)=x^(3)+1/(x^(3)) is decreasing function in the interval [-1,1]-{0} .

Verify Rolle's theorem for the function f(x) = {log (x^(2) +2) - log 3 } in the interval [-1,1] .

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. Let the function f(x)=4 sinx+3 cos x+ log (|x|+sqrt(1+x^(2))) be de...

    Text Solution

    |

  2. The period of the function f(x)=sin^(4)3x+cos^(4)3x, is

    Text Solution

    |

  3. The value of integer n for which the function f(x)=(sinx)/(sin(x / n)...

    Text Solution

    |

  4. The period of the function f(x)=sin((2x+3)/(6pi)), is

    Text Solution

    |

  5. The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

    Text Solution

    |

  6. The domain of the function f(x)=log(10) (sqrt(x-4)+sqrt(6-x)) is :

    Text Solution

    |

  7. Let f(x)=(sqrt(sinx))/(1+(sinx)^(1/3)) then domain f contains

    Text Solution

    |

  8. If f : R -> R is defined by f(x) = [2x] - 2[x] for x in R, where [x] i...

    Text Solution

    |

  9. If N denotes the set of all positive integers and if f : N -> N is def...

    Text Solution

    |

  10. The set of value of a for which the function f(x)=sinx+[(x^(2))/(a)] d...

    Text Solution

    |

  11. If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt ...

    Text Solution

    |

  12. Find the equivalent definition of f(x)=max.{x^(2),(1-x)^(2),2x(1-x)...

    Text Solution

    |

  13. If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

    Text Solution

    |

  14. The function f(x) is defined in [0,1] . Find the domain of f(t a nx)do...

    Text Solution

    |

  15. The domain of definition of the real function f(x)=sqrt(log(12)x^(2)) ...

    Text Solution

    |

  16. The values of ba n dc for which the identity of f(x+1)-f(x)=8x+3 is sa...

    Text Solution

    |

  17. The function f(x)=sin""(pix)/(2)+2 cos ""(pix)/(3)-tan""(pix)/(4) is p...

    Text Solution

    |

  18. The period of the function sin""((pix)/(2))+cos((pix)/(2)), is

    Text Solution

    |

  19. If x in R, then f(x)=sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  20. If x in R , then f(x)=cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

    Text Solution

    |

  21. The equivalent definition of the function f(x)=lim(n to oo)(x^(n)-x^(-...

    Text Solution

    |