Home
Class 12
MATHS
If f (x) = 27x^(3) -(1)/(x^(3)) and alph...

If `f (x) = 27x^(3) -(1)/(x^(3))` and `alpha, beta` are roots of `3x - (1)/(x) = 2` then

A

`f (alpha) = f(beta)`

B

`f(alpha) =10`

C

`f (beta) = -10`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given function and the roots of the equation. ### Step 1: Identify the function and the equation We have: \[ f(x) = 27x^3 - \frac{1}{x^3} \] and the roots \( \alpha \) and \( \beta \) satisfy the equation: \[ 3x - \frac{1}{x} = 2 \] ### Step 2: Solve for \( \alpha \) and \( \beta \) To find \( \alpha \) and \( \beta \), we rearrange the equation: \[ 3x - \frac{1}{x} = 2 \] Multiplying through by \( x \) (assuming \( x \neq 0 \)): \[ 3x^2 - 1 = 2x \] Rearranging gives us: \[ 3x^2 - 2x - 1 = 0 \] ### Step 3: Use the quadratic formula Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 3, b = -2, c = -1 \): \[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 3 \cdot (-1)}}{2 \cdot 3} \] \[ x = \frac{2 \pm \sqrt{4 + 12}}{6} \] \[ x = \frac{2 \pm \sqrt{16}}{6} \] \[ x = \frac{2 \pm 4}{6} \] Calculating the two roots: 1. \( x = \frac{6}{6} = 1 \) 2. \( x = \frac{-2}{6} = -\frac{1}{3} \) Thus, \( \alpha = 1 \) and \( \beta = -\frac{1}{3} \). ### Step 4: Calculate \( f(\alpha) \) and \( f(\beta) \) Now we calculate \( f(\alpha) \) and \( f(\beta) \): 1. For \( \alpha = 1 \): \[ f(1) = 27(1)^3 - \frac{1}{(1)^3} = 27 - 1 = 26 \] 2. For \( \beta = -\frac{1}{3} \): \[ f\left(-\frac{1}{3}\right) = 27\left(-\frac{1}{3}\right)^3 - \frac{1}{\left(-\frac{1}{3}\right)^3} \] \[ = 27\left(-\frac{1}{27}\right) - \frac{1}{-\frac{1}{27}} \] \[ = -1 + 27 = 26 \] ### Step 5: Conclusion Thus, we find: \[ f(\alpha) = 26 \] \[ f(\beta) = 26 \] Both roots give the same function value.

To solve the problem step by step, we start with the given function and the roots of the equation. ### Step 1: Identify the function and the equation We have: \[ f(x) = 27x^3 - \frac{1}{x^3} \] and the roots \( \alpha \) and \( \beta \) satisfy the equation: \[ 3x - \frac{1}{x} = 2 \] ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

If f is a real valued function given by f(x)=27 x^3+1/(x^3)a n dalpha,beta are roots of 3x+1/x=2. Then, f(alpha)=f(beta)=-9 (b) f(alpha)=10 (c) f(beta)=-10 (d) none of these

If f(x)=64x^3+1/x^3 and alpha,beta are the roots of 4x+1/x=3 . Then,value of f(x)=

If (x + 2)(x + 3b) = c has roots alpha,beta , then the roots of (x + alpha)(x+beta) + c = 0 are

Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisfy alpha lt beta gamma are the roots of f '(x)=0 then which of the following is/are correct ([.] denots greatest integer function) ?

If (1+alpha)/(1-alpha),(1+beta)/(1-beta), (1+gamma)/(1-gamma) are the cubic equation f(x) = 0 where alpha,beta,gamma are the roots of the cubic equation 3x^3 - 2x + 5 =0 , then the number of negative real roots of the equation f(x) = 0 is :

If (1+alpha)/(1-alpha),(1+beta)/(1-beta), (1+gamma)/(1-gamma) are the cubic equation f(x) = 0 where alpha,beta,gamma are the roots of the cubic equation 3x^3 - 2x + 5 =0 , then the number of negative real roots of the equation f(x) = 0 is :

If A(alpha,1/alpha),B(beta,1/beta) "and" C(gamma,1/gamma) are the vertices of Delta ABC where alpha,beta are roots of x^(2)-6p_(1)x+2 =0 : beta,gamma are roots of x^(2)-6p_(2)x+3 = 0 and gamma, alpha are roots of x^(2)-6p_(3)x+6=0(p_(1),p_(2),p_(3) are positive) then find the co-ordinates of centroid of Delta ABC

If alpha, beta are the roots of x^2 - sqrt(3)x + 1 = 0 then alpha^(21) + beta^(21) is:

If alpha, beta, gamma are roots of x^(3) - 2x^(2) + 3x - 4 = 0 , then sum a^(2) beta^(2) =

If alpha, beta are the roots of 3x^(2) + 5x - 7 = 0 then (1)/(3alpha+5)^(2)+ (1)/(3beta+5)^(2)=

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. If f(x) = (x-1)/(x+1), then f(alphax)=

    Text Solution

    |

  2. If f (x) = 27x^(3) -(1)/(x^(3)) and alpha, beta are roots of 3x - (1)/...

    Text Solution

    |

  3. Let f : R to R be a function given by f(x+y) = f(x) + f(y) for all ...

    Text Solution

    |

  4. Let f : R to R be a function given by f(x+y) = f(x) + f(y) for all ...

    Text Solution

    |

  5. Le the be a real valued functions satisfying f(x+1) + f(x-1) = 2 f(x) ...

    Text Solution

    |

  6. If f(x) is a real valued functions satisfying f(x+y) = f(x) +f(y) -yx...

    Text Solution

    |

  7. If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,y in R and f(1)=7, then...

    Text Solution

    |

  8. If f(x) =ax^(2) + bx + c satisfies the identity f(x+1) -f(x)= 8x+ 3 fo...

    Text Solution

    |

  9. If f(x+y,x -y)= xy then (f(x,y)+f(y,x))/(2)=

    Text Solution

    |

  10. A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1...

    Text Solution

    |

  11. If f: R to R, g , R to R be two funcitons, and h(x) = 2 "min" {f(x) - ...

    Text Solution

    |

  12. If f(x) = cos ([pi]x) +cos [pi x], where [] is the greatest integer fu...

    Text Solution

    |

  13. If f(x)= cos [(pi^(2))/(2)] x + sin[(-pi^(2))/(2)]x,[x] denoting the g...

    Text Solution

    |

  14. If one the roots fo the equation x^(2) +x f(a) + a=0 is the cube of ...

    Text Solution

    |

  15. If the graph of a function f(x) is symmetrical about the line x = a, t...

    Text Solution

    |

  16. If a real function f(x) satisfies the relation f(x) = f(2a -x) for al...

    Text Solution

    |

  17. The largest interval lying in (-(pi)/(2), (pi)/(2)) for which the fun...

    Text Solution

    |

  18. The domain of f (x) = log(2) (2x^(3) - x^(2) - 4x + 2), is

    Text Solution

    |

  19. If f(x) =1- x, x in [-3,3], then the domain of fof (x) is

    Text Solution

    |

  20. If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x), then the domain of fog (x)...

    Text Solution

    |