Home
Class 12
MATHS
Le the be a real valued functions satisf...

Le the be a real valued functions satisfying `f(x+1) + f(x-1) = 2 f(x)` for all `x, y in R` and `f(0) = 0`, then for any `n in N`, f(n) =

A

n f(1)

B

`[ f(1)]^(n)`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functional equation given and derive a general formula for \( f(n) \) where \( n \) is a natural number. ### Step-by-Step Solution: 1. **Understanding the Functional Equation**: The functional equation provided is: \[ f(x+1) + f(x-1) = 2f(x) \] This resembles a second-order linear recurrence relation. 2. **Initial Condition**: We are given that \( f(0) = 0 \). 3. **Finding \( f(1) \)**: Let's substitute \( x = 0 \) into the functional equation: \[ f(1) + f(-1) = 2f(0) \] Since \( f(0) = 0 \), we have: \[ f(1) + f(-1) = 0 \quad \text{(1)} \] This implies \( f(-1) = -f(1) \). 4. **Finding \( f(2) \)**: Now, substitute \( x = 1 \): \[ f(2) + f(0) = 2f(1) \] Again, since \( f(0) = 0 \), we get: \[ f(2) = 2f(1) \quad \text{(2)} \] 5. **Finding \( f(3) \)**: Substitute \( x = 2 \): \[ f(3) + f(1) = 2f(2) \] Using equation (2) where \( f(2) = 2f(1) \): \[ f(3) + f(1) = 2(2f(1)) = 4f(1) \] Thus, we can express \( f(3) \) as: \[ f(3) = 4f(1) - f(1) = 3f(1) \quad \text{(3)} \] 6. **Finding \( f(4) \)**: Substitute \( x = 3 \): \[ f(4) + f(2) = 2f(3) \] Using \( f(2) = 2f(1) \) and \( f(3) = 3f(1) \): \[ f(4) + 2f(1) = 2(3f(1)) = 6f(1) \] Therefore: \[ f(4) = 6f(1) - 2f(1) = 4f(1) \quad \text{(4)} \] 7. **Finding a Pattern**: From the values we have computed: - \( f(1) = 1f(1) \) - \( f(2) = 2f(1) \) - \( f(3) = 3f(1) \) - \( f(4) = 4f(1) \) We can see a pattern emerging: \[ f(n) = nf(1) \quad \text{for } n \in \mathbb{N} \] 8. **Conclusion**: Thus, for any natural number \( n \): \[ f(n) = nf(1) \] ### Final Answer: For any \( n \in \mathbb{N} \), \( f(n) = nf(1) \).

To solve the problem, we need to analyze the functional equation given and derive a general formula for \( f(n) \) where \( n \) is a natural number. ### Step-by-Step Solution: 1. **Understanding the Functional Equation**: The functional equation provided is: \[ f(x+1) + f(x-1) = 2f(x) ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . Then , sum_(k=1)^(n) f(k)=

Let be a real function satisfying f(x)+f(y)=f((x+y)/(1-xy)) for all x ,y in R and xy ne1 . Then f(x) is

If f(x) is a real valued functions satisfying f(x+y) = f(x) +f(y) -yx -1 for all x, y in R such that f(1)=1 then the number of solutions of f(n) = n,n in N , is

Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R and f(0)!=0 Then g(x)=f(x)/(1+[f(x)]^2) is

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. Let f : R to R be a function given by f(x+y) = f(x) + f(y) for all ...

    Text Solution

    |

  2. Let f : R to R be a function given by f(x+y) = f(x) + f(y) for all ...

    Text Solution

    |

  3. Le the be a real valued functions satisfying f(x+1) + f(x-1) = 2 f(x) ...

    Text Solution

    |

  4. If f(x) is a real valued functions satisfying f(x+y) = f(x) +f(y) -yx...

    Text Solution

    |

  5. If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,y in R and f(1)=7, then...

    Text Solution

    |

  6. If f(x) =ax^(2) + bx + c satisfies the identity f(x+1) -f(x)= 8x+ 3 fo...

    Text Solution

    |

  7. If f(x+y,x -y)= xy then (f(x,y)+f(y,x))/(2)=

    Text Solution

    |

  8. A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1...

    Text Solution

    |

  9. If f: R to R, g , R to R be two funcitons, and h(x) = 2 "min" {f(x) - ...

    Text Solution

    |

  10. If f(x) = cos ([pi]x) +cos [pi x], where [] is the greatest integer fu...

    Text Solution

    |

  11. If f(x)= cos [(pi^(2))/(2)] x + sin[(-pi^(2))/(2)]x,[x] denoting the g...

    Text Solution

    |

  12. If one the roots fo the equation x^(2) +x f(a) + a=0 is the cube of ...

    Text Solution

    |

  13. If the graph of a function f(x) is symmetrical about the line x = a, t...

    Text Solution

    |

  14. If a real function f(x) satisfies the relation f(x) = f(2a -x) for al...

    Text Solution

    |

  15. The largest interval lying in (-(pi)/(2), (pi)/(2)) for which the fun...

    Text Solution

    |

  16. The domain of f (x) = log(2) (2x^(3) - x^(2) - 4x + 2), is

    Text Solution

    |

  17. If f(x) =1- x, x in [-3,3], then the domain of fof (x) is

    Text Solution

    |

  18. If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x), then the domain of fog (x)...

    Text Solution

    |

  19. Let f(x) = log(e) x and g(x) =(x^(4) -2x^(3) + 3x^(2) - 2x+2)/(2x^(2)...

    Text Solution

    |

  20. Let f(x) be a function whose domain is [-5,7]. Let g(x)=|2x+5|, then d...

    Text Solution

    |