Home
Class 12
MATHS
If f(x) =ax^(2) + bx + c satisfies the i...

If `f(x) =ax^(2) + bx + c` satisfies the identity `f(x+1) -f(x)= 8x+ 3` for all `x in R` Then (a,b)=

A

`(2,1)`

B

`(4,-1)`

C

`(-1,4)`

D

`(-1,1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \(a\) and \(b\) in the function \(f(x) = ax^2 + bx + c\) given that it satisfies the identity \(f(x+1) - f(x) = 8x + 3\). ### Step-by-Step Solution: 1. **Define the Function**: We start with the function: \[ f(x) = ax^2 + bx + c \] 2. **Calculate \(f(x+1)\)**: To find \(f(x+1)\), we substitute \(x\) with \(x+1\): \[ f(x+1) = a(x+1)^2 + b(x+1) + c \] Expanding this: \[ f(x+1) = a(x^2 + 2x + 1) + b(x + 1) + c \] \[ = ax^2 + 2ax + a + bx + b + c \] \[ = ax^2 + (2a + b)x + (a + b + c) \] 3. **Subtract \(f(x)\) from \(f(x+1)\)**: Now we compute \(f(x+1) - f(x)\): \[ f(x+1) - f(x) = \left(ax^2 + (2a + b)x + (a + b + c)\right) - \left(ax^2 + bx + c\right) \] Simplifying this gives: \[ = (2a + b - b)x + (a + b + c - c) \] \[ = 2ax + (a + b) \] 4. **Set the Expression Equal to the Given Identity**: According to the problem, we have: \[ f(x+1) - f(x) = 8x + 3 \] Therefore, we can equate: \[ 2ax + (a + b) = 8x + 3 \] 5. **Compare Coefficients**: From the equation \(2ax + (a + b) = 8x + 3\), we can compare the coefficients of \(x\) and the constant terms: - For the coefficient of \(x\): \[ 2a = 8 \implies a = \frac{8}{2} = 4 \] - For the constant term: \[ a + b = 3 \] 6. **Substitute \(a\) to Find \(b\)**: Now substituting \(a = 4\) into the equation \(a + b = 3\): \[ 4 + b = 3 \implies b = 3 - 4 = -1 \] 7. **Final Result**: Thus, we have: \[ (a, b) = (4, -1) \] ### Summary: The values of \(a\) and \(b\) are: \[ (a, b) = (4, -1) \]

To solve the problem, we need to find the values of \(a\) and \(b\) in the function \(f(x) = ax^2 + bx + c\) given that it satisfies the identity \(f(x+1) - f(x) = 8x + 3\). ### Step-by-Step Solution: 1. **Define the Function**: We start with the function: \[ f(x) = ax^2 + bx + c ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Let g(x) =f(x)-2{f(x)}^2+9{f(x)}^3 for all x in R Then

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

If f:RrarrR is a function satisfying the property f(x+1)+f(x+3)=2" for all" x in R than f is

If a real function f(x) satisfies the relation f(x) = f(2a -x) for all x in R . Then, its graph is symmetrical about the line.

If a real polynomial of degree n satisfies the relation f(x)=f(x)f''(x)"for all "x in R" Then "f"R to R

If f(x) = a + bx + cx^2 where a, b, c in R then int_o ^1 f(x)dx

The function f (x) satisfy the equation f (1-x)+ 2f (x) =3x AA x in R, then f (0)=

A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1/x) for all x inR , x!=0 . If f(3)=-26, then f(4)=

If f(x) = ax^(2) + bx + c is such that |f(0)| le 1, |f(1)| le 1 and |f(-1)| le 1 , prove that |f(x)| le 5//4, AA x in [-1, 1]

A function f : R rarr R satisfies the equation f(x + y) = f(x) . f(y) for all, f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f'(0) = 2. Then,

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. If f(x) is a real valued functions satisfying f(x+y) = f(x) +f(y) -yx...

    Text Solution

    |

  2. If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,y in R and f(1)=7, then...

    Text Solution

    |

  3. If f(x) =ax^(2) + bx + c satisfies the identity f(x+1) -f(x)= 8x+ 3 fo...

    Text Solution

    |

  4. If f(x+y,x -y)= xy then (f(x,y)+f(y,x))/(2)=

    Text Solution

    |

  5. A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1...

    Text Solution

    |

  6. If f: R to R, g , R to R be two funcitons, and h(x) = 2 "min" {f(x) - ...

    Text Solution

    |

  7. If f(x) = cos ([pi]x) +cos [pi x], where [] is the greatest integer fu...

    Text Solution

    |

  8. If f(x)= cos [(pi^(2))/(2)] x + sin[(-pi^(2))/(2)]x,[x] denoting the g...

    Text Solution

    |

  9. If one the roots fo the equation x^(2) +x f(a) + a=0 is the cube of ...

    Text Solution

    |

  10. If the graph of a function f(x) is symmetrical about the line x = a, t...

    Text Solution

    |

  11. If a real function f(x) satisfies the relation f(x) = f(2a -x) for al...

    Text Solution

    |

  12. The largest interval lying in (-(pi)/(2), (pi)/(2)) for which the fun...

    Text Solution

    |

  13. The domain of f (x) = log(2) (2x^(3) - x^(2) - 4x + 2), is

    Text Solution

    |

  14. If f(x) =1- x, x in [-3,3], then the domain of fof (x) is

    Text Solution

    |

  15. If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x), then the domain of fog (x)...

    Text Solution

    |

  16. Let f(x) = log(e) x and g(x) =(x^(4) -2x^(3) + 3x^(2) - 2x+2)/(2x^(2)...

    Text Solution

    |

  17. Let f(x) be a function whose domain is [-5,7]. Let g(x)=|2x+5|, then d...

    Text Solution

    |

  18. The domain of f(x) = (log(2) (x+3))/(x^(2) + 3x +2), is

    Text Solution

    |

  19. The domain of definition of f (x) = sin ^(-1) {log(2)(x^(2) + 3x + 4)}...

    Text Solution

    |

  20. The domain of definition of f(x)=sin^(- 1)[2-4x^2] is ([.] denotes the...

    Text Solution

    |