Home
Class 12
MATHS
A polynomial function f(x) satisfies the...

A polynomial function f(x) satisfies the condition `f(x)f(1/x)=f(x)+f(1/x)` for all `x inR`,`x!=0`. If f(3)=-26, then f(4)=

A

`-35`

B

`-63`

C

65

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given condition for the polynomial function \( f(x) \): ### Step 1: Understand the condition The condition given is: \[ f(x)f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) \] for all \( x \in \mathbb{R} \) and \( x \neq 0 \). ### Step 2: Assume a form for \( f(x) \) A common approach for such functional equations is to assume a polynomial form. Let's assume: \[ f(x) = 1 - x^n \] for some integer \( n \). ### Step 3: Verify the assumption Now we need to check if this form satisfies the given condition. We calculate \( f\left(\frac{1}{x}\right) \): \[ f\left(\frac{1}{x}\right) = 1 - \left(\frac{1}{x}\right)^n = 1 - \frac{1}{x^n} \] Now, substituting \( f(x) \) and \( f\left(\frac{1}{x}\right) \) into the condition: \[ (1 - x^n)\left(1 - \frac{1}{x^n}\right) = (1 - x^n) + \left(1 - \frac{1}{x^n}\right) \] Expanding the left side: \[ 1 - x^n - \frac{1}{x^n} + 1 = 2 - x^n - \frac{1}{x^n} \] And the right side simplifies to: \[ 2 - x^n - \frac{1}{x^n} \] Both sides are equal, confirming our assumption is valid. ### Step 4: Use the condition \( f(3) = -26 \) We know \( f(3) = -26 \): \[ f(3) = 1 - 3^n = -26 \] Solving for \( n \): \[ 1 - 3^n = -26 \implies -3^n = -27 \implies 3^n = 27 \] This gives: \[ n = 3 \] ### Step 5: Find \( f(4) \) Now we can find \( f(4) \): \[ f(4) = 1 - 4^3 = 1 - 64 = -63 \] ### Conclusion Thus, the value of \( f(4) \) is: \[ \boxed{-63} \]

To solve the problem step by step, we start with the given condition for the polynomial function \( f(x) \): ### Step 1: Understand the condition The condition given is: \[ f(x)f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) \] for all \( x \in \mathbb{R} \) and \( x \neq 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f(x)+f((1)/(x)) . If f(10)=1001, then f(20)=

If f:RtoR is a function which satisfies the condition f(x)+f(y)=f((x+y)/(1+xy)) for all x, y in R except xy=-1 , then range of f(x) is

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

Let f(x) be a polynomial function satisfying f(x)+f((1)/(x))=f(x)f((1)/(x))" for all "xne0. If f(5)=126" and a,b,c are in G.P., then"f'(a),f'(b),f'(c) are in

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

A function f(x) satisfies the functional equation x^2f(x)+f(1-x)=2x-x^4 for all real x. f(x) must be

If f(x) is a differntiable function satisfying the condition f(100x)=x+f(100x-100) , forall x in R and f(100)=1 , then f(10^(4)) is

The function f(x) satisfying the equation f^2 (x) + 4 f'(x) f(x) + (f'(x))^2 = 0

If f(x) is a polynomial in x and f(x).f(1/x)=f(x)+f(1/x) for all x,y and f(2)=33, then f(x) is

let f(x) be a polynomial satisfying f(x) : f(1/x) = f(x) + f(1/x) for all X in R :- {O} and f(5) =126, then find f(3).

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. If f(x) =ax^(2) + bx + c satisfies the identity f(x+1) -f(x)= 8x+ 3 fo...

    Text Solution

    |

  2. If f(x+y,x -y)= xy then (f(x,y)+f(y,x))/(2)=

    Text Solution

    |

  3. A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1...

    Text Solution

    |

  4. If f: R to R, g , R to R be two funcitons, and h(x) = 2 "min" {f(x) - ...

    Text Solution

    |

  5. If f(x) = cos ([pi]x) +cos [pi x], where [] is the greatest integer fu...

    Text Solution

    |

  6. If f(x)= cos [(pi^(2))/(2)] x + sin[(-pi^(2))/(2)]x,[x] denoting the g...

    Text Solution

    |

  7. If one the roots fo the equation x^(2) +x f(a) + a=0 is the cube of ...

    Text Solution

    |

  8. If the graph of a function f(x) is symmetrical about the line x = a, t...

    Text Solution

    |

  9. If a real function f(x) satisfies the relation f(x) = f(2a -x) for al...

    Text Solution

    |

  10. The largest interval lying in (-(pi)/(2), (pi)/(2)) for which the fun...

    Text Solution

    |

  11. The domain of f (x) = log(2) (2x^(3) - x^(2) - 4x + 2), is

    Text Solution

    |

  12. If f(x) =1- x, x in [-3,3], then the domain of fof (x) is

    Text Solution

    |

  13. If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x), then the domain of fog (x)...

    Text Solution

    |

  14. Let f(x) = log(e) x and g(x) =(x^(4) -2x^(3) + 3x^(2) - 2x+2)/(2x^(2)...

    Text Solution

    |

  15. Let f(x) be a function whose domain is [-5,7]. Let g(x)=|2x+5|, then d...

    Text Solution

    |

  16. The domain of f(x) = (log(2) (x+3))/(x^(2) + 3x +2), is

    Text Solution

    |

  17. The domain of definition of f (x) = sin ^(-1) {log(2)(x^(2) + 3x + 4)}...

    Text Solution

    |

  18. The domain of definition of f(x)=sin^(- 1)[2-4x^2] is ([.] denotes the...

    Text Solution

    |

  19. The domain of the function f(x)=sqrt(x^2-[x]^2) , where [x] is the gre...

    Text Solution

    |

  20. The domain of definition of f(x)=cos^(- 1)(x+[x]) is

    Text Solution

    |