Home
Class 12
MATHS
If f(x) = cos ([pi]x) +cos [pi x], where...

If f(x) `= cos ([pi]x) +cos [pi x]`, where [] is the greatest integer function, then `f((pi)/(2))` is equal to

A

`cos3`

B

0

C

`cos 4`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

We have,
`f (x) = cos [pi] x + cos[pix]`
`f((pi)/(2)) = cos([pi].(pi)/(2)] + cos[(pi^(2))/(2)]= cos.(3pi)/(2)+ cos 4 = cos4`
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

If f(x) = cos [pi]x + cos [pi x] , where [y] is the greatest integer function of y then f(pi/2) is equal to

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

If f(x)=cos[pi/x] cos(pi/2(x-1)) ; where [x] is the greatest integer function of x ,then f(x) is continuous at :

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

if f(x) = cos pi (|x|+[x]), where [.] denotes the greatest integer , function then which is not true ?

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer function, Then (gof)' (pi//2) is

If f(x) = x+|x|+ cos ([ pi^(2) ]x) and g(x) =sin x, where [.] denotes the greatest integer function, then

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

If f(x)=cos[pi^2]x , where [x] stands for the greatest integer function, then (a) f(pi/2)=-1 (b) f(pi)=1 (c) f(-pi)=0 (d) f(pi/4)=1/sqrt(2)

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1...

    Text Solution

    |

  2. If f: R to R, g , R to R be two funcitons, and h(x) = 2 "min" {f(x) - ...

    Text Solution

    |

  3. If f(x) = cos ([pi]x) +cos [pi x], where [] is the greatest integer fu...

    Text Solution

    |

  4. If f(x)= cos [(pi^(2))/(2)] x + sin[(-pi^(2))/(2)]x,[x] denoting the g...

    Text Solution

    |

  5. If one the roots fo the equation x^(2) +x f(a) + a=0 is the cube of ...

    Text Solution

    |

  6. If the graph of a function f(x) is symmetrical about the line x = a, t...

    Text Solution

    |

  7. If a real function f(x) satisfies the relation f(x) = f(2a -x) for al...

    Text Solution

    |

  8. The largest interval lying in (-(pi)/(2), (pi)/(2)) for which the fun...

    Text Solution

    |

  9. The domain of f (x) = log(2) (2x^(3) - x^(2) - 4x + 2), is

    Text Solution

    |

  10. If f(x) =1- x, x in [-3,3], then the domain of fof (x) is

    Text Solution

    |

  11. If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x), then the domain of fog (x)...

    Text Solution

    |

  12. Let f(x) = log(e) x and g(x) =(x^(4) -2x^(3) + 3x^(2) - 2x+2)/(2x^(2)...

    Text Solution

    |

  13. Let f(x) be a function whose domain is [-5,7]. Let g(x)=|2x+5|, then d...

    Text Solution

    |

  14. The domain of f(x) = (log(2) (x+3))/(x^(2) + 3x +2), is

    Text Solution

    |

  15. The domain of definition of f (x) = sin ^(-1) {log(2)(x^(2) + 3x + 4)}...

    Text Solution

    |

  16. The domain of definition of f(x)=sin^(- 1)[2-4x^2] is ([.] denotes the...

    Text Solution

    |

  17. The domain of the function f(x)=sqrt(x^2-[x]^2) , where [x] is the gre...

    Text Solution

    |

  18. The domain of definition of f(x)=cos^(- 1)(x+[x]) is

    Text Solution

    |

  19. The domain of definition of the functions f(x) = log(e)(x-[x]), is

    Text Solution

    |

  20. If f(x) = [x] and g(x) = {x}= fraction part of x, then for any two ...

    Text Solution

    |