Home
Class 12
MATHS
If f(x)= cos [(pi^(2))/(2)] x + sin[(-pi...

If `f(x)= cos [(pi^(2))/(2)] x + sin[(-pi^(2))/(2)]x,[x]` denoting the greatest integer function,then

A

`f(0) = 0`

B

`f((pi)/(3)) = sqrt((3)-1)/(2)`

C

`f((pi)/(2)) = -1`

D

`f(pi) = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \cos\left(\frac{\pi^2}{2} x\right) + \sin\left(-\frac{\pi^2}{2} x\right) \) where \([x]\) denotes the greatest integer function. ### Step 1: Calculate \( \frac{\pi^2}{2} \) First, we need to find the value of \( \frac{\pi^2}{2} \). Using \( \pi \approx 3.14 \): \[ \pi^2 \approx (3.14)^2 \approx 9.8596 \] Thus, \[ \frac{\pi^2}{2} \approx \frac{9.8596}{2} \approx 4.9298 \] ### Step 2: Determine the greatest integer function Now, we apply the greatest integer function: \[ \left[\frac{\pi^2}{2}\right] = 4 \] ### Step 3: Rewrite the function Now we can rewrite the function using the greatest integer value: \[ f(x) = \cos(4x) + \sin(-4x) \] Since \( \sin(-\theta) = -\sin(\theta) \), we can simplify this to: \[ f(x) = \cos(4x) - \sin(4x) \] ### Step 4: Evaluate \( f(0) \) Now, let's evaluate \( f(0) \): \[ f(0) = \cos(4 \cdot 0) - \sin(4 \cdot 0) = \cos(0) - \sin(0) = 1 - 0 = 1 \] ### Step 5: Evaluate \( f\left(\frac{\pi}{3}\right) \) Next, we evaluate \( f\left(\frac{\pi}{3}\right) \): \[ f\left(\frac{\pi}{3}\right) = \cos\left(4 \cdot \frac{\pi}{3}\right) - \sin\left(4 \cdot \frac{\pi}{3}\right) \] Calculating \( 4 \cdot \frac{\pi}{3} = \frac{4\pi}{3} \): \[ f\left(\frac{\pi}{3}\right) = \cos\left(\frac{4\pi}{3}\right) - \sin\left(\frac{4\pi}{3}\right) \] Using the unit circle: \[ \cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2}, \quad \sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2} \] Thus, \[ f\left(\frac{\pi}{3}\right) = -\frac{1}{2} - \left(-\frac{\sqrt{3}}{2}\right) = -\frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{\sqrt{3} - 1}{2} \] ### Step 6: Evaluate \( f\left(\frac{\pi}{2}\right) \) Next, we evaluate \( f\left(\frac{\pi}{2}\right) \): \[ f\left(\frac{\pi}{2}\right) = \cos\left(4 \cdot \frac{\pi}{2}\right) - \sin\left(4 \cdot \frac{\pi}{2}\right) = \cos(2\pi) - \sin(2\pi) = 1 - 0 = 1 \] ### Step 7: Evaluate \( f(\pi) \) Finally, we evaluate \( f(\pi) \): \[ f(\pi) = \cos(4\pi) - \sin(4\pi) = 1 - 0 = 1 \] ### Summary of Results - \( f(0) = 1 \) - \( f\left(\frac{\pi}{3}\right) = \frac{\sqrt{3} - 1}{2} \) - \( f\left(\frac{\pi}{2}\right) = 1 \) - \( f(\pi) = 1 \) ### Conclusion The correct options based on the evaluations are \( f(0) = 1 \), \( f\left(\frac{\pi}{2}\right) = 1 \), and \( f(\pi) = 1 \).

To solve the problem, we need to analyze the function \( f(x) = \cos\left(\frac{\pi^2}{2} x\right) + \sin\left(-\frac{\pi^2}{2} x\right) \) where \([x]\) denotes the greatest integer function. ### Step 1: Calculate \( \frac{\pi^2}{2} \) First, we need to find the value of \( \frac{\pi^2}{2} \). Using \( \pi \approx 3.14 \): \[ \pi^2 \approx (3.14)^2 \approx 9.8596 ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

If f(x) = x+|x|+ cos ([ pi^(2) ]x) and g(x) =sin x, where [.] denotes the greatest integer function, then

if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greatest integer function), then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Period of the function f(x)=sin((x)/(2))cos [(x)/(2)]-cos((x)/(2))sin[(x)/(2)] , where [.] denotes the greatest integer function, is _________.

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. If f: R to R, g , R to R be two funcitons, and h(x) = 2 "min" {f(x) - ...

    Text Solution

    |

  2. If f(x) = cos ([pi]x) +cos [pi x], where [] is the greatest integer fu...

    Text Solution

    |

  3. If f(x)= cos [(pi^(2))/(2)] x + sin[(-pi^(2))/(2)]x,[x] denoting the g...

    Text Solution

    |

  4. If one the roots fo the equation x^(2) +x f(a) + a=0 is the cube of ...

    Text Solution

    |

  5. If the graph of a function f(x) is symmetrical about the line x = a, t...

    Text Solution

    |

  6. If a real function f(x) satisfies the relation f(x) = f(2a -x) for al...

    Text Solution

    |

  7. The largest interval lying in (-(pi)/(2), (pi)/(2)) for which the fun...

    Text Solution

    |

  8. The domain of f (x) = log(2) (2x^(3) - x^(2) - 4x + 2), is

    Text Solution

    |

  9. If f(x) =1- x, x in [-3,3], then the domain of fof (x) is

    Text Solution

    |

  10. If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x), then the domain of fog (x)...

    Text Solution

    |

  11. Let f(x) = log(e) x and g(x) =(x^(4) -2x^(3) + 3x^(2) - 2x+2)/(2x^(2)...

    Text Solution

    |

  12. Let f(x) be a function whose domain is [-5,7]. Let g(x)=|2x+5|, then d...

    Text Solution

    |

  13. The domain of f(x) = (log(2) (x+3))/(x^(2) + 3x +2), is

    Text Solution

    |

  14. The domain of definition of f (x) = sin ^(-1) {log(2)(x^(2) + 3x + 4)}...

    Text Solution

    |

  15. The domain of definition of f(x)=sin^(- 1)[2-4x^2] is ([.] denotes the...

    Text Solution

    |

  16. The domain of the function f(x)=sqrt(x^2-[x]^2) , where [x] is the gre...

    Text Solution

    |

  17. The domain of definition of f(x)=cos^(- 1)(x+[x]) is

    Text Solution

    |

  18. The domain of definition of the functions f(x) = log(e)(x-[x]), is

    Text Solution

    |

  19. If f(x) = [x] and g(x) = {x}= fraction part of x, then for any two ...

    Text Solution

    |

  20. The domain of definition of f(x) = log(2) (log(3) (log(4) x)), is

    Text Solution

    |