Home
Class 12
MATHS
The domain of f (x) = log(2) (2x^(3) - x...

The domain of `f (x) = log_(2) (2x^(3) - x^(2) - 4x + 2)`, is

A

` (-sqrt2, 1//2) uu ( sqrt2, oo)`

B

`(-1, 1//2) uu ( sqrt2, oo)`

C

`(-sqrt2,-1 ) uu (1,oo)`

D

` (-oo, -sqrt2)uu( sqrt2, oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \log_2(2x^3 - x^2 - 4x + 2) \), we need to determine where the argument of the logarithm is positive, since logarithms are only defined for positive values. ### Step-by-Step Solution: 1. **Set the argument of the logarithm greater than zero**: \[ 2x^3 - x^2 - 4x + 2 > 0 \] 2. **Factor the polynomial**: We will first try to factor the polynomial \( 2x^3 - x^2 - 4x + 2 \). We can group terms: \[ 2x^3 - 4x - x^2 + 2 = 2x(x^2 - 2) - 1(x^2 - 2) \] Factoring out \( (x^2 - 2) \): \[ = (2x - 1)(x^2 - 2) \] 3. **Further factor \( x^2 - 2 \)**: The expression \( x^2 - 2 \) can be factored as: \[ x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2}) \] Therefore, we can write: \[ 2x^3 - x^2 - 4x + 2 = (2x - 1)(x - \sqrt{2})(x + \sqrt{2}) \] 4. **Determine the critical points**: The critical points from the factors are: \[ 2x - 1 = 0 \implies x = \frac{1}{2} \] \[ x - \sqrt{2} = 0 \implies x = \sqrt{2} \] \[ x + \sqrt{2} = 0 \implies x = -\sqrt{2} \] 5. **Test intervals around the critical points**: We will test the sign of \( (2x - 1)(x - \sqrt{2})(x + \sqrt{2}) \) in the intervals: - \( (-\infty, -\sqrt{2}) \) - \( (-\sqrt{2}, \frac{1}{2}) \) - \( (\frac{1}{2}, \sqrt{2}) \) - \( (\sqrt{2}, \infty) \) - **Interval \( (-\infty, -\sqrt{2}) \)**: Choose \( x = -2 \): \[ (2(-2) - 1)(-2 - \sqrt{2})(-2 + \sqrt{2}) \Rightarrow (-5)(-2 - \sqrt{2})(-2 + \sqrt{2}) > 0 \] (Positive) - **Interval \( (-\sqrt{2}, \frac{1}{2}) \)**: Choose \( x = 0 \): \[ (2(0) - 1)(0 - \sqrt{2})(0 + \sqrt{2}) \Rightarrow (-1)(-\sqrt{2})(\sqrt{2}) < 0 \] (Negative) - **Interval \( (\frac{1}{2}, \sqrt{2}) \)**: Choose \( x = 1 \): \[ (2(1) - 1)(1 - \sqrt{2})(1 + \sqrt{2}) \Rightarrow (1)(1 - \sqrt{2})(1 + \sqrt{2}) < 0 \] (Negative) - **Interval \( (\sqrt{2}, \infty) \)**: Choose \( x = 2 \): \[ (2(2) - 1)(2 - \sqrt{2})(2 + \sqrt{2}) \Rightarrow (3)(2 - \sqrt{2})(2 + \sqrt{2}) > 0 \] (Positive) 6. **Combine the intervals where the expression is positive**: The expression \( 2x^3 - x^2 - 4x + 2 > 0 \) is positive in the intervals: \[ (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty) \] ### Conclusion: Thus, the domain of the function \( f(x) = \log_2(2x^3 - x^2 - 4x + 2) \) is: \[ (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty) \]

To find the domain of the function \( f(x) = \log_2(2x^3 - x^2 - 4x + 2) \), we need to determine where the argument of the logarithm is positive, since logarithms are only defined for positive values. ### Step-by-Step Solution: 1. **Set the argument of the logarithm greater than zero**: \[ 2x^3 - x^2 - 4x + 2 > 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The domain of f(x) = (log_(2) (x+3))/(x^(2) + 3x +2) , is

The domain of f(x) = (log_(2)(x+4))/(x^(2) + 3x + 2) is

The domain of f(x) = (x^(2))/(x^(2) - 3x + 2) is :

domain of f(x) = (3)/(2-x^(2)) is

Domain of f(x) =log _((x))(9-x ^(2)) is :

The domain of f(x)=(x)/(16-x^(2))+log_(2)(x^(3)-2x) is

Domain of the function f(x) =log_(0.5) (3x-x^(2)-2)

Find domain of f(x)=sqrt(log_(1/2)((5x-x^2)/4))

The domain of definition of f(x) = log_(2) (log_(3) (log_(4) x)) , is

The domain of definition of f (x) = sin ^(-1) {log_(2)(x^(2) + 3x + 4)} , is

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. If a real function f(x) satisfies the relation f(x) = f(2a -x) for al...

    Text Solution

    |

  2. The largest interval lying in (-(pi)/(2), (pi)/(2)) for which the fun...

    Text Solution

    |

  3. The domain of f (x) = log(2) (2x^(3) - x^(2) - 4x + 2), is

    Text Solution

    |

  4. If f(x) =1- x, x in [-3,3], then the domain of fof (x) is

    Text Solution

    |

  5. If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x), then the domain of fog (x)...

    Text Solution

    |

  6. Let f(x) = log(e) x and g(x) =(x^(4) -2x^(3) + 3x^(2) - 2x+2)/(2x^(2)...

    Text Solution

    |

  7. Let f(x) be a function whose domain is [-5,7]. Let g(x)=|2x+5|, then d...

    Text Solution

    |

  8. The domain of f(x) = (log(2) (x+3))/(x^(2) + 3x +2), is

    Text Solution

    |

  9. The domain of definition of f (x) = sin ^(-1) {log(2)(x^(2) + 3x + 4)}...

    Text Solution

    |

  10. The domain of definition of f(x)=sin^(- 1)[2-4x^2] is ([.] denotes the...

    Text Solution

    |

  11. The domain of the function f(x)=sqrt(x^2-[x]^2) , where [x] is the gre...

    Text Solution

    |

  12. The domain of definition of f(x)=cos^(- 1)(x+[x]) is

    Text Solution

    |

  13. The domain of definition of the functions f(x) = log(e)(x-[x]), is

    Text Solution

    |

  14. If f(x) = [x] and g(x) = {x}= fraction part of x, then for any two ...

    Text Solution

    |

  15. The domain of definition of f(x) = log(2) (log(3) (log(4) x)), is

    Text Solution

    |

  16. The domain of the function f(x)=log2[log3(log4(x^2-3x+6)}]i s .

    Text Solution

    |

  17. The domain of definition of the function f(x)=sqrt(log(10) ((2-x)/(x)...

    Text Solution

    |

  18. The domain of definition of the function f(x) = sqrt(log(x^(2)-1)) x i...

    Text Solution

    |

  19. Find the domain f(x)=sqrt(log(10){(log(10)x)/(2(3-log(10)x))})

    Text Solution

    |

  20. The domain of definition of the function f(x) = log(3) {-log(1//2)(1+(...

    Text Solution

    |