Home
Class 12
MATHS
The domain of definition of f(x)=sin^(- ...

The domain of definition of `f(x)=sin^(- 1)[2-4x^2]` is ([.] denotes the greatest integer function).

A

`[sqrt3//2, sqrt3//2]`

B

`[-sqrt3//2, 0]`

C

`[-sqrt3//2, 0) uu(0, sqrt3//2]`

D

`[-sqrt3//2, oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sin^{-1}[2 - 4x^2] \), we need to ensure that the argument of the inverse sine function lies within the valid range, which is between -1 and 1, inclusive. Additionally, we need to consider the greatest integer function (denoted by square brackets). ### Step-by-Step Solution: 1. **Identify the range for the argument of \( \sin^{-1} \)**: \[ -1 \leq 2 - 4x^2 \leq 1 \] 2. **Break this into two inequalities**: - First inequality: \[ 2 - 4x^2 \geq -1 \] - Second inequality: \[ 2 - 4x^2 \leq 1 \] 3. **Solve the first inequality**: \[ 2 - 4x^2 \geq -1 \implies 3 \geq 4x^2 \implies \frac{3}{4} \geq x^2 \] This simplifies to: \[ x^2 \leq \frac{3}{4} \] 4. **Solve the second inequality**: \[ 2 - 4x^2 \leq 1 \implies 1 \leq 4x^2 \implies \frac{1}{4} \leq x^2 \] This simplifies to: \[ x^2 \geq \frac{1}{4} \] 5. **Combine the results**: From the two inequalities, we have: \[ \frac{1}{4} \leq x^2 \leq \frac{3}{4} \] 6. **Express in terms of \( x \)**: Taking the square root gives: \[ \sqrt{\frac{1}{4}} \leq |x| \leq \sqrt{\frac{3}{4}} \] This translates to: \[ \frac{1}{2} \leq |x| \leq \frac{\sqrt{3}}{2} \] 7. **Write the domain**: This means: \[ -\frac{\sqrt{3}}{2} \leq x \leq -\frac{1}{2} \quad \text{or} \quad \frac{1}{2} \leq x \leq \frac{\sqrt{3}}{2} \] 8. **Final domain representation**: Therefore, the domain of \( f(x) \) is: \[ x \in \left[-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right] \cup \left[\frac{1}{2}, \frac{\sqrt{3}}{2}\right] \]

To find the domain of the function \( f(x) = \sin^{-1}[2 - 4x^2] \), we need to ensure that the argument of the inverse sine function lies within the valid range, which is between -1 and 1, inclusive. Additionally, we need to consider the greatest integer function (denoted by square brackets). ### Step-by-Step Solution: 1. **Identify the range for the argument of \( \sin^{-1} \)**: \[ -1 \leq 2 - 4x^2 \leq 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. The domain of f(x) = (log(2) (x+3))/(x^(2) + 3x +2), is

    Text Solution

    |

  2. The domain of definition of f (x) = sin ^(-1) {log(2)(x^(2) + 3x + 4)}...

    Text Solution

    |

  3. The domain of definition of f(x)=sin^(- 1)[2-4x^2] is ([.] denotes the...

    Text Solution

    |

  4. The domain of the function f(x)=sqrt(x^2-[x]^2) , where [x] is the gre...

    Text Solution

    |

  5. The domain of definition of f(x)=cos^(- 1)(x+[x]) is

    Text Solution

    |

  6. The domain of definition of the functions f(x) = log(e)(x-[x]), is

    Text Solution

    |

  7. If f(x) = [x] and g(x) = {x}= fraction part of x, then for any two ...

    Text Solution

    |

  8. The domain of definition of f(x) = log(2) (log(3) (log(4) x)), is

    Text Solution

    |

  9. The domain of the function f(x)=log2[log3(log4(x^2-3x+6)}]i s .

    Text Solution

    |

  10. The domain of definition of the function f(x)=sqrt(log(10) ((2-x)/(x)...

    Text Solution

    |

  11. The domain of definition of the function f(x) = sqrt(log(x^(2)-1)) x i...

    Text Solution

    |

  12. Find the domain f(x)=sqrt(log(10){(log(10)x)/(2(3-log(10)x))})

    Text Solution

    |

  13. The domain of definition of the function f(x) = log(3) {-log(1//2)(1+(...

    Text Solution

    |

  14. If [x] denote the greater integer less than or equal to x, then the...

    Text Solution

    |

  15. If e ^(x)+e^(f(x))=e, then for f (x) domain is:

    Text Solution

    |

  16. The domain of f(x)i s(0,1)dot Then the domain of (f(e^x)+f(1n|x|) is (...

    Text Solution

    |

  17. f(x)=sqrt(e^(cos^(-1)(log(4)x^(2))))

    Text Solution

    |

  18. The domain of definition of function f(x)=4sqrt(log(3){(1)/(|cosx|)} ...

    Text Solution

    |

  19. The domain of definition of f(x) = sqrt(sec^(-1){(1-|x|)/(2)}) is

    Text Solution

    |

  20. The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

    Text Solution

    |