Home
Class 12
MATHS
The domain of definition of f(x) = sqrt...

The domain of definition of `f(x) = sqrt(sec^(-1){(1-|x|)/(2)})` is

A

`(-oo, -3)`

B

`[3, oo)`

C

`phi`

D

`(-oo, -3] uu [3, oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{\sec^{-1}\left(\frac{1 - |x|}{2}\right)} \), we need to ensure that the expression under the square root is defined and non-negative. ### Step 1: Ensure the expression under the square root is non-negative For \( f(x) \) to be defined, the argument of the square root must be non-negative: \[ \sec^{-1}\left(\frac{1 - |x|}{2}\right) \geq 0 \] The range of \( \sec^{-1}(y) \) is \( [0, \pi/2) \cup (\pi/2, \pi] \), which means \( \sec^{-1}(y) \) is defined for \( y \leq -1 \) or \( y \geq 1 \). ### Step 2: Determine the conditions for \( \frac{1 - |x|}{2} \) We need to find when \( \frac{1 - |x|}{2} \) is either \( \leq -1 \) or \( \geq 1 \). 1. **Condition 1**: \( \frac{1 - |x|}{2} \geq 1 \) \[ 1 - |x| \geq 2 \] \[ -|x| \geq 1 \quad \Rightarrow \quad |x| \leq -1 \] This condition is not possible since the absolute value cannot be negative. 2. **Condition 2**: \( \frac{1 - |x|}{2} \leq -1 \) \[ 1 - |x| \leq -2 \] \[ -|x| \leq -3 \quad \Rightarrow \quad |x| \geq 3 \] ### Step 3: Solve the inequality \( |x| \geq 3 \) The inequality \( |x| \geq 3 \) means: \[ x \leq -3 \quad \text{or} \quad x \geq 3 \] ### Step 4: Write the domain in interval notation Thus, the domain of the function \( f(x) \) is: \[ (-\infty, -3] \cup [3, \infty) \] ### Final Answer The domain of the function \( f(x) = \sqrt{\sec^{-1}\left(\frac{1 - |x|}{2}\right)} \) is: \[ \boxed{(-\infty, -3] \cup [3, \infty)} \]

To find the domain of the function \( f(x) = \sqrt{\sec^{-1}\left(\frac{1 - |x|}{2}\right)} \), we need to ensure that the expression under the square root is defined and non-negative. ### Step 1: Ensure the expression under the square root is non-negative For \( f(x) \) to be defined, the argument of the square root must be non-negative: \[ \sec^{-1}\left(\frac{1 - |x|}{2}\right) \geq 0 \] The range of \( \sec^{-1}(y) \) is \( [0, \pi/2) \cup (\pi/2, \pi] \), which means \( \sec^{-1}(y) \) is defined for \( y \leq -1 \) or \( y \geq 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The domain of definition of f(x) = sqrt(e^(cos-1)(log_(4) x^(2))) is

The domain of definition of f(X) = sin^(-1)(-x^(2)) is

The domain of definition of f(x)=cos^(- 1)(x+[x]) is

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

Find the domain of the function: f(x)=sqrt(sec^(-1)((2-|x|)/4))

Domain of the function f(x)=sqrt(2-sec^(-1)x) is

Find the domain of definition of f(x)=cos^(-1)(x^2-4) .

The domain of definition of cos^(-1)(2x-1) is

The domain of definition of the function f(x)=sqrt(x-1)+sqrt(3-x) is a. [1,oo) b. (-oo,3) c. (1,3) d. [1,3]

Find the domain of definition of the function f(x) = sqrt(a^(2) - x^(2)), a gt 0 .

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. f(x)=sqrt(e^(cos^(-1)(log(4)x^(2))))

    Text Solution

    |

  2. The domain of definition of function f(x)=4sqrt(log(3){(1)/(|cosx|)} ...

    Text Solution

    |

  3. The domain of definition of f(x) = sqrt(sec^(-1){(1-|x|)/(2)}) is

    Text Solution

    |

  4. The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

    Text Solution

    |

  5. The domain of definiton of the function f(x) = cot^(-1) {(x)/(sqrt(x^...

    Text Solution

    |

  6. The function f(x) = cot^(-1) sqrt(x(x+3)) + cos^(-1) sqrt(x^(2) + 3x +...

    Text Solution

    |

  7. The domain of definition of the function f(x) given by the equation 2^...

    Text Solution

    |

  8. The domain of the function f(x) = sqrt((4-x^(2))/([x]+2)) where [x] d...

    Text Solution

    |

  9. The domain of definition of the function f(x) = sqrt(3-2^(x) -2^(1-x)...

    Text Solution

    |

  10. The domain of definiton of definition of f(x)= log (x) cosx, is

    Text Solution

    |

  11. The domain of the function f(x) = sin^(-1) ((2-|x|)/(4)) + cos^(-1) (...

    Text Solution

    |

  12. The number of integral values of x for which the function sqrt(sinx+co...

    Text Solution

    |

  13. If f(x) is defined on (0,1), then the domain of f(sinx) is

    Text Solution

    |

  14. Let f(x)= cos^(-1)((x^(2))/(x^(2)+1)). Then , the range of the f , is

    Text Solution

    |

  15. The range of the function f(x)=(1)/(2-cos 3x) is

    Text Solution

    |

  16. The range of the function f(x) = log(3) (5+4x - x^(2)), is

    Text Solution

    |

  17. The range of the function is f(x)=log5(25-x^2) is

    Text Solution

    |

  18. The range of function f:[0,1] to R , f(x) = x^3-x^2 + 4x + 2 sin^(-1) ...

    Text Solution

    |

  19. Let f(x)=4 cos sqrt(x^(2)-pi^(2)/9). Then, the range of f(x) is :

    Text Solution

    |

  20. The range of the function f(x) = tan sqrt((pi^(2))/(9)-x^(2)), is

    Text Solution

    |