Home
Class 12
MATHS
The domain of the function f(x) = sin^(...

The domain of the function `f(x) = sin^(-1) ((2-|x|)/(4)) + cos^(-1) ((2-|x|)/(4)) + tan^(-1) ((2-|x|)/(4))` is

A

` [0, 3]`

B

`[-6, 6]`

C

`[-1, 1]`

D

`[-3, 3]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \[ f(x) = \sin^{-1} \left( \frac{2 - |x|}{4} \right) + \cos^{-1} \left( \frac{2 - |x|}{4} \right) + \tan^{-1} \left( \frac{2 - |x|}{4} \right), \] we need to determine the constraints on \( x \) for each of the inverse functions involved. ### Step 1: Determine the domain for \( \sin^{-1} \left( \frac{2 - |x|}{4} \right) \) The function \( \sin^{-1}(a) \) is defined for \( -1 \leq a \leq 1 \). Therefore, we need: \[ -1 \leq \frac{2 - |x|}{4} \leq 1. \] **Hint:** Start by solving the inequalities separately. ### Step 2: Solve the inequalities 1. **For the left inequality:** \[ -1 \leq \frac{2 - |x|}{4} \] Multiply both sides by 4: \[ -4 \leq 2 - |x| \] Rearranging gives: \[ |x| \leq 6. \] 2. **For the right inequality:** \[ \frac{2 - |x|}{4} \leq 1 \] Multiply both sides by 4: \[ 2 - |x| \leq 4 \] Rearranging gives: \[ |x| \geq -2. \] Since \( |x| \) is always non-negative, this condition is always satisfied. **Hint:** Combine the results from both inequalities. ### Step 3: Combine results From the inequalities, we have: \[ |x| \leq 6. \] This means: \[ -6 \leq x \leq 6. \] ### Step 4: Determine the domain for \( \cos^{-1} \left( \frac{2 - |x|}{4} \right) \) The domain for \( \cos^{-1}(a) \) is also \( -1 \leq a \leq 1 \). The analysis is identical to that of \( \sin^{-1} \), leading to the same condition: \[ -6 \leq x \leq 6. \] **Hint:** Notice that both inverse functions have the same domain constraints. ### Step 5: Determine the domain for \( \tan^{-1} \left( \frac{2 - |x|}{4} \right) \) The function \( \tan^{-1}(a) \) is defined for all real numbers. Therefore, there are no additional constraints from this part of the function. ### Step 6: Final domain The overall domain of \( f(x) \) is determined by the intersection of the domains of the three functions. Since both \( \sin^{-1} \) and \( \cos^{-1} \) give the domain \( -6 \leq x \leq 6 \) and \( \tan^{-1} \) is valid for all \( x \), the final domain of \( f(x) \) is: \[ \text{Domain of } f(x) = [-6, 6]. \] ### Conclusion Thus, the domain of the function \( f(x) \) is: \[ \boxed{[-6, 6]}. \]

To find the domain of the function \[ f(x) = \sin^{-1} \left( \frac{2 - |x|}{4} \right) + \cos^{-1} \left( \frac{2 - |x|}{4} \right) + \tan^{-1} \left( \frac{2 - |x|}{4} \right), \] we need to determine the constraints on \( x \) for each of the inverse functions involved. ### Step 1: Determine the domain for \( \sin^{-1} \left( \frac{2 - |x|}{4} \right) \) ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=cos^(-1)((2-absx)/4) is

Find the domain of the function f(x)=sin^(-1)(2x-3)

Domain of the function f(x)= sin^(- 1)(1+3x+2x^2)

Find the domain of the function f(x)=sin^(-1)(2x-3) .

Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The domain of the function f(x)=4sqrt(cos^(-1)((1-|x|)/(2))) is

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

The domain of the function f(x)=(sin^(-1)(3-x))/("In"(|x|-2)) is

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. The domain of definition of the function f(x) = sqrt(3-2^(x) -2^(1-x)...

    Text Solution

    |

  2. The domain of definiton of definition of f(x)= log (x) cosx, is

    Text Solution

    |

  3. The domain of the function f(x) = sin^(-1) ((2-|x|)/(4)) + cos^(-1) (...

    Text Solution

    |

  4. The number of integral values of x for which the function sqrt(sinx+co...

    Text Solution

    |

  5. If f(x) is defined on (0,1), then the domain of f(sinx) is

    Text Solution

    |

  6. Let f(x)= cos^(-1)((x^(2))/(x^(2)+1)). Then , the range of the f , is

    Text Solution

    |

  7. The range of the function f(x)=(1)/(2-cos 3x) is

    Text Solution

    |

  8. The range of the function f(x) = log(3) (5+4x - x^(2)), is

    Text Solution

    |

  9. The range of the function is f(x)=log5(25-x^2) is

    Text Solution

    |

  10. The range of function f:[0,1] to R , f(x) = x^3-x^2 + 4x + 2 sin^(-1) ...

    Text Solution

    |

  11. Let f(x)=4 cos sqrt(x^(2)-pi^(2)/9). Then, the range of f(x) is :

    Text Solution

    |

  12. The range of the function f(x) = tan sqrt((pi^(2))/(9)-x^(2)), is

    Text Solution

    |

  13. Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer ...

    Text Solution

    |

  14. The range of the function f(x) = sqrt(2-x)+sqrt( 1+x)

    Text Solution

    |

  15. The range of the function f defined by f(x)=[1/(sin{x})] (where [.] an...

    Text Solution

    |

  16. If f(x) is a periodic function with period lambda and f(ax+b) is perod...

    Text Solution

    |

  17. The peroid of the function f(x) = |cos.(x)/(2)|+ |sinx| is

    Text Solution

    |

  18. Let f(x) = x(2-x), 0 le x le 2. If the definition of f(x) is extende...

    Text Solution

    |

  19. The peroid of the function f(x) =(|sinx|-|cosx|)/(|sin x + cosx|) i...

    Text Solution

    |

  20. The function f(x) = 3^(sin^(2)pi + sin^(4) pi x + x-[x]) where [x] den...

    Text Solution

    |