Home
Class 12
MATHS
The range of the function f(x) = sqrt(2-...

The range of the function `f(x) = sqrt(2-x)+sqrt( 1+x)`

A

`[sqrt3, sqrt6]`

B

`[0, sqrt6]`

C

`(sqrt3, sqrt6)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sqrt{2 - x} + \sqrt{1 + x} \), we will follow these steps: ### Step 1: Determine the Domain The function involves square roots, which means the expressions inside the square roots must be non-negative. 1. For \( \sqrt{2 - x} \): \[ 2 - x \geq 0 \implies x \leq 2 \] 2. For \( \sqrt{1 + x} \): \[ 1 + x \geq 0 \implies x \geq -1 \] Thus, the domain of \( f(x) \) is: \[ [-1, 2] \] ### Step 2: Find the Minimum and Maximum Values of \( f(x) \) Next, we will evaluate \( f(x) \) at the endpoints of the domain and check for any critical points within the interval. 1. **Evaluate at the endpoints**: - At \( x = -1 \): \[ f(-1) = \sqrt{2 - (-1)} + \sqrt{1 + (-1)} = \sqrt{3} + 0 = \sqrt{3} \] - At \( x = 2 \): \[ f(2) = \sqrt{2 - 2} + \sqrt{1 + 2} = 0 + \sqrt{3} = \sqrt{3} \] 2. **Check for critical points**: To find critical points, we can differentiate \( f(x) \) and set the derivative to zero. \[ f'(x) = \frac{-1}{2\sqrt{2 - x}} + \frac{1}{2\sqrt{1 + x}} \] Setting \( f'(x) = 0 \): \[ \frac{-1}{2\sqrt{2 - x}} + \frac{1}{2\sqrt{1 + x}} = 0 \] \[ \frac{1}{\sqrt{1 + x}} = \frac{1}{\sqrt{2 - x}} \] Squaring both sides: \[ 1 + x = 2 - x \] \[ 2x = 1 \implies x = \frac{1}{2} \] 3. **Evaluate \( f(x) \) at the critical point**: - At \( x = \frac{1}{2} \): \[ f\left(\frac{1}{2}\right) = \sqrt{2 - \frac{1}{2}} + \sqrt{1 + \frac{1}{2}} = \sqrt{\frac{3}{2}} + \sqrt{\frac{3}{2}} = 2\sqrt{\frac{3}{2}} = \sqrt{6} \] ### Step 3: Determine the Range Now we have the values of \( f(x) \) at the endpoints and the critical point: - \( f(-1) = \sqrt{3} \) - \( f(2) = \sqrt{3} \) - \( f\left(\frac{1}{2}\right) = \sqrt{6} \) Since \( f(x) \) is continuous on the interval \([-1, 2]\), the range of \( f(x) \) is from the minimum value \( \sqrt{3} \) to the maximum value \( \sqrt{6} \). Thus, the range of the function \( f(x) \) is: \[ [\sqrt{3}, \sqrt{6}] \] ### Final Answer The range of the function \( f(x) = \sqrt{2 - x} + \sqrt{1 + x} \) is: \[ [\sqrt{3}, \sqrt{6}] \]

To find the range of the function \( f(x) = \sqrt{2 - x} + \sqrt{1 + x} \), we will follow these steps: ### Step 1: Determine the Domain The function involves square roots, which means the expressions inside the square roots must be non-negative. 1. For \( \sqrt{2 - x} \): \[ 2 - x \geq 0 \implies x \leq 2 ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The range of the function f(x) = sqrt(4 - x^2) + sqrt(x^2 - 1) is

The range of the function f(x)=sqrt(x-1)+2sqrt(3-x) is

Find the range of the function f(x)=2sqrt(x-2)+sqrt(4-x)

Find the range of the function f(x)=2sqrt(x-2)+sqrt(4-x)

The range of the function f(x)=sqrt(1-x^2)/(1+|x|) is

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

The function f(x)=sqrt(1-sqrt(1-x^2))

Which of the following correctly shows the range of the function f(x)= sqrt(-x^(2)+4x+12) ?

The number of integers in the range of the function f(x)=|4((sqrt(cos"x")-sqrt(sinx))(sqrt(cos"x")+sqrt(sinx)))/(cosx+sinx)| is______

The domain of the function f(x)=sqrt(x^(2)-5x+6)+sqrt(2x+8-x^(2)) , is

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. The range of the function f(x) = tan sqrt((pi^(2))/(9)-x^(2)), is

    Text Solution

    |

  2. Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer ...

    Text Solution

    |

  3. The range of the function f(x) = sqrt(2-x)+sqrt( 1+x)

    Text Solution

    |

  4. The range of the function f defined by f(x)=[1/(sin{x})] (where [.] an...

    Text Solution

    |

  5. If f(x) is a periodic function with period lambda and f(ax+b) is perod...

    Text Solution

    |

  6. The peroid of the function f(x) = |cos.(x)/(2)|+ |sinx| is

    Text Solution

    |

  7. Let f(x) = x(2-x), 0 le x le 2. If the definition of f(x) is extende...

    Text Solution

    |

  8. The peroid of the function f(x) =(|sinx|-|cosx|)/(|sin x + cosx|) i...

    Text Solution

    |

  9. The function f(x) = 3^(sin^(2)pi + sin^(4) pi x + x-[x]) where [x] den...

    Text Solution

    |

  10. Period of the function f(x) =(1)/(3){sin 3x + |sin 3x | + [sin 3x]} is...

    Text Solution

    |

  11. The function f(theta) = cos (pi sin^(2) theta), is

    Text Solution

    |

  12. Let f(x) = (1)/(sqrt(|x-1|-[x])) where[.] denotes the greatest intege...

    Text Solution

    |

  13. Let f(x)=[9^x-3^x+1] for all x in (-oo, 1), then the range of f(x) is,...

    Text Solution

    |

  14. If f(x) = log(e^2x) ((2lnx+2)/(-x)) and g(x) = {x} then range of g(x) ...

    Text Solution

    |

  15. f(x)=cos^(-1)sqrt(log([x])""abs(x)/x), where [*] denotes the greatest ...

    Text Solution

    |

  16. period the function f(x)=(sin{sin(n x)})/(tan (x/n)), nin N, is 6pi ...

    Text Solution

    |

  17. If[.] and {.} denote greatest integer and fractional part functions r...

    Text Solution

    |

  18. The domain of the funciton f(x) given by 3^(x) + 3^(f) = "min" (2t^(3...

    Text Solution

    |

  19. Let f:(4,6)vec(6,8) be a function defined by f(x)=x+[x/2]dotw h e r e[...

    Text Solution

    |

  20. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |