Home
Class 12
MATHS
Let f(x) = x(2-x), 0 le x le 2. If the ...

Let `f(x) = x(2-x), 0 le x le 2`. If the definition of `f(x)` is extended over the set `R-[0,2]` by `f (x+1)= f(x)`, then f is a

A

periodic function with period 1

B

non-periodic function

C

periodic function with period 2

D

periodic function with period `1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = x(2-x) \) defined for \( 0 \leq x \leq 2 \) and how it behaves when extended to the entire set of real numbers using the rule \( f(x+1) = f(x) \). ### Step 1: Evaluate the function \( f(x) \) on the interval \( [0, 2] \) The function is defined as: \[ f(x) = x(2 - x) \] We can calculate the values of \( f(x) \) at the endpoints of the interval: - At \( x = 0 \): \[ f(0) = 0(2 - 0) = 0 \] - At \( x = 2 \): \[ f(2) = 2(2 - 2) = 0 \] - At \( x = 1 \): \[ f(1) = 1(2 - 1) = 1 \] ### Step 2: Identify the maximum value of \( f(x) \) The function is a quadratic function that opens downwards (since the coefficient of \( x^2 \) is negative). The vertex of the parabola can be found using the formula \( x = -\frac{b}{2a} \) where \( f(x) = ax^2 + bx + c \). Here, \( a = -1 \) and \( b = 2 \): \[ x = -\frac{2}{2(-1)} = 1 \] At \( x = 1 \), we already calculated \( f(1) = 1 \). Thus, the maximum value of \( f(x) \) on the interval \( [0, 2] \) is 1. ### Step 3: Extend the function to \( \mathbb{R} \) The extension of \( f(x) \) is defined by the rule \( f(x+1) = f(x) \). This means that the function repeats its values every 2 units. Therefore, we can express: \[ f(x) = f(x - 2) \text{ for any } x \in \mathbb{R} \] ### Step 4: Determine the periodicity of \( f(x) \) Since \( f(x) \) repeats its values every 2 units, we conclude that: \[ f(x) \text{ is periodic with period } 2. \] ### Conclusion Thus, the function \( f(x) \) is periodic with a period of 2. ---

To solve the problem, we need to analyze the function \( f(x) = x(2-x) \) defined for \( 0 \leq x \leq 2 \) and how it behaves when extended to the entire set of real numbers using the rule \( f(x+1) = f(x) \). ### Step 1: Evaluate the function \( f(x) \) on the interval \( [0, 2] \) The function is defined as: \[ f(x) = x(2 - x) \] ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=2x(2-x), 0 le x le 2 . Then find the number of solutions of f(f(f(x)))= (x)/(2) .

Let f (x)= max (x,x ^(2) x ^(3)) in -2 le x le 2. Then:

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Let |f (x)| le sin ^(2) x, AA x in R, then

If f(x)=[4x]-2x with domain 0 le x le 2 , then f(x) can also be written as

let f(x) = {:{( x^(2) , x le 0) , ( ax , x gt 0):} then f (x) is derivable at x = 0 if

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is

Let f (x) =2-|x-3| , 1 le x le 5 and for rest of the values f (x) can be obtained by unsing the relation f (5x)=alpha f (x) AA x in R. The vlaue of f (2007), taking alpha =5, is :

Let f"'(x)>=0 ,f'(x)> 0, f(0) =3 & f(x) is defined in [-2, 2].If f(x) is non-negative, then

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. If f(x) is a periodic function with period lambda and f(ax+b) is perod...

    Text Solution

    |

  2. The peroid of the function f(x) = |cos.(x)/(2)|+ |sinx| is

    Text Solution

    |

  3. Let f(x) = x(2-x), 0 le x le 2. If the definition of f(x) is extende...

    Text Solution

    |

  4. The peroid of the function f(x) =(|sinx|-|cosx|)/(|sin x + cosx|) i...

    Text Solution

    |

  5. The function f(x) = 3^(sin^(2)pi + sin^(4) pi x + x-[x]) where [x] den...

    Text Solution

    |

  6. Period of the function f(x) =(1)/(3){sin 3x + |sin 3x | + [sin 3x]} is...

    Text Solution

    |

  7. The function f(theta) = cos (pi sin^(2) theta), is

    Text Solution

    |

  8. Let f(x) = (1)/(sqrt(|x-1|-[x])) where[.] denotes the greatest intege...

    Text Solution

    |

  9. Let f(x)=[9^x-3^x+1] for all x in (-oo, 1), then the range of f(x) is,...

    Text Solution

    |

  10. If f(x) = log(e^2x) ((2lnx+2)/(-x)) and g(x) = {x} then range of g(x) ...

    Text Solution

    |

  11. f(x)=cos^(-1)sqrt(log([x])""abs(x)/x), where [*] denotes the greatest ...

    Text Solution

    |

  12. period the function f(x)=(sin{sin(n x)})/(tan (x/n)), nin N, is 6pi ...

    Text Solution

    |

  13. If[.] and {.} denote greatest integer and fractional part functions r...

    Text Solution

    |

  14. The domain of the funciton f(x) given by 3^(x) + 3^(f) = "min" (2t^(3...

    Text Solution

    |

  15. Let f:(4,6)vec(6,8) be a function defined by f(x)=x+[x/2]dotw h e r e[...

    Text Solution

    |

  16. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  17. The range of the function f(x)=(x^2+x+2)/(x^2+x+1),x in R , is (1,oo)...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. If f: RvecS , defined by f(x)=sinx-sqrt(3)cosx+1,is onto , then find ...

    Text Solution

    |

  20. The graph of the function y=f(x) is symmetrical about the line x=2, th...

    Text Solution

    |