Home
Class 12
MATHS
Let f(x)=[9^x-3^x+1] for all x in (-oo, ...

Let `f(x)=[9^x-3^x+1]` for all `x in (-oo, 1),` then the range of `f(x)` is, ([.] denotes the greatest integer function).

A

`{0, 1, 2, 3, 4, 5, 6, 7}`

B

`{0, 1, 2 , 3, 4, 5, 6}`

C

`{1, 2, 3, 4, 5, 6, 7}`

D

`{1, 2, 3, 4, 5, 6}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the range of the function \( f(x) = \lfloor 9^x - 3^x + 1 \rfloor \) for \( x \in (-\infty, 1) \). ### Step-by-Step Solution: 1. **Rewrite the Function**: We can express \( 9^x \) as \( (3^2)^x = (3^x)^2 \). Thus, we can rewrite the function: \[ f(x) = \lfloor (3^x)^2 - 3^x + 1 \rfloor \] 2. **Let \( y = 3^x \)**: Since \( x \) approaches \(-\infty\), \( y \) approaches \( 0 \) (as \( 3^x \) is a decreasing function). When \( x \) approaches \( 1 \), \( y \) approaches \( 3 \). Therefore, \( y \) ranges from \( 0 \) to \( 3 \) (not including \( 3 \)): \[ y \in (0, 3) \] 3. **Substitute \( y \) into the Function**: Now, substituting \( y \) into our function gives: \[ f(x) = \lfloor y^2 - y + 1 \rfloor \] 4. **Analyze the Expression \( y^2 - y + 1 \)**: We need to find the minimum and maximum values of \( y^2 - y + 1 \) as \( y \) varies from \( 0 \) to \( 3 \). - **At \( y = 0 \)**: \[ f(0) = 0^2 - 0 + 1 = 1 \] - **At \( y = 3 \)** (approaching but not including): \[ f(3) = 3^2 - 3 + 1 = 9 - 3 + 1 = 7 \] 5. **Find the Range**: The function \( g(y) = y^2 - y + 1 \) is a quadratic function that opens upwards. The vertex of this quadratic can be found using the formula \( y = -\frac{b}{2a} \): \[ y = -\frac{-1}{2 \cdot 1} = \frac{1}{2} \] Evaluating \( g\left(\frac{1}{2}\right) \): \[ g\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} + 1 = \frac{1}{4} - \frac{2}{4} + \frac{4}{4} = \frac{3}{4} \] Therefore, as \( y \) ranges from \( 0 \) to \( 3 \), \( g(y) \) ranges from \( g(0) = 1 \) to just below \( g(3) = 7 \). 6. **Apply the Greatest Integer Function**: Since \( g(y) \) ranges from \( \frac{3}{4} \) to just below \( 7 \), the greatest integer function \( \lfloor g(y) \rfloor \) will take values from \( 0 \) to \( 6 \): \[ f(x) \in [0, 6] \] ### Conclusion: Thus, the range of \( f(x) \) is: \[ \{0, 1, 2, 3, 4, 5, 6\} \]

To solve the problem, we need to find the range of the function \( f(x) = \lfloor 9^x - 3^x + 1 \rfloor \) for \( x \in (-\infty, 1) \). ### Step-by-Step Solution: 1. **Rewrite the Function**: We can express \( 9^x \) as \( (3^2)^x = (3^x)^2 \). Thus, we can rewrite the function: \[ f(x) = \lfloor (3^x)^2 - 3^x + 1 \rfloor ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

draw the graph of f(x)=x+[x] , [.] denotes greatest integer function.

Draw the graph of f(x)=x+[x], [.] denotes greatest integer function.

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function)

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. The function f(theta) = cos (pi sin^(2) theta), is

    Text Solution

    |

  2. Let f(x) = (1)/(sqrt(|x-1|-[x])) where[.] denotes the greatest intege...

    Text Solution

    |

  3. Let f(x)=[9^x-3^x+1] for all x in (-oo, 1), then the range of f(x) is,...

    Text Solution

    |

  4. If f(x) = log(e^2x) ((2lnx+2)/(-x)) and g(x) = {x} then range of g(x) ...

    Text Solution

    |

  5. f(x)=cos^(-1)sqrt(log([x])""abs(x)/x), where [*] denotes the greatest ...

    Text Solution

    |

  6. period the function f(x)=(sin{sin(n x)})/(tan (x/n)), nin N, is 6pi ...

    Text Solution

    |

  7. If[.] and {.} denote greatest integer and fractional part functions r...

    Text Solution

    |

  8. The domain of the funciton f(x) given by 3^(x) + 3^(f) = "min" (2t^(3...

    Text Solution

    |

  9. Let f:(4,6)vec(6,8) be a function defined by f(x)=x+[x/2]dotw h e r e[...

    Text Solution

    |

  10. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  11. The range of the function f(x)=(x^2+x+2)/(x^2+x+1),x in R , is (1,oo)...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. If f: RvecS , defined by f(x)=sinx-sqrt(3)cosx+1,is onto , then find ...

    Text Solution

    |

  14. The graph of the function y=f(x) is symmetrical about the line x=2, th...

    Text Solution

    |

  15. The domain of the function f(x)=sin^(-1)((8(3)^(x-2))/(1-3^(2(x-1)))) ...

    Text Solution

    |

  16. find the value of the

    Text Solution

    |

  17. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |

  18. Let f(x)=sin((pi)/(6)sin((pi)/(2)sinx)) " for all "x in R and g(x)=(pi...

    Text Solution

    |

  19. Consider the function f defined on the set of all non-negative interg...

    Text Solution

    |

  20. In a function 2f(x)+ xf(1/x)-2f(|sqrt2sin(pi(x+1/4))|)=4cos^2[(pix)/2]...

    Text Solution

    |