Home
Class 12
MATHS
If f(x) = log(e^2x) ((2lnx+2)/(-x)) and ...

If `f(x) = log_(e^2x) ((2lnx+2)/(-x))` and `g(x) = {x}` then range of `g(x)` for existance of `f(g(x))` is

A

`(0, 2//e)`

B

`(0, 1//e) - {1//e^(2)}`

C

`(0, 3//e)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( f(x) \) and \( g(x) \) and determine the range of \( g(x) \) for which \( f(g(x)) \) exists. ### Step-by-Step Solution 1. **Identify the functions**: - Given \( f(x) = \log_{e^{2x}} \left( \frac{2\ln x + 2}{-x} \right) \) - Given \( g(x) = \{ x \} \) (the fractional part of \( x \)) 2. **Determine the domain of \( f(x) \)**: - The base of the logarithm \( e^{2x} \) must be positive and not equal to 1. - \( e^{2x} > 0 \) for all \( x \) (always true). - \( e^{2x} \neq 1 \) implies \( 2x \neq 0 \) or \( x \neq 0 \). - Therefore, \( x \) must be greater than 0: \( x > 0 \). 3. **Determine when the argument of the logarithm is positive**: - We need \( \frac{2\ln x + 2}{-x} > 0 \). - This simplifies to \( 2\ln x + 2 < 0 \) (since \(-x < 0\) for \(x > 0\)). - Thus, \( \ln x < -1 \). - Exponentiating both sides gives \( x < \frac{1}{e} \). 4. **Combine the conditions**: - From the above, we have two conditions: - \( x > 0 \) - \( x < \frac{1}{e} \) - Therefore, the domain of \( f(x) \) is \( 0 < x < \frac{1}{e} \). 5. **Determine the range of \( g(x) \)**: - The function \( g(x) = \{ x \} \) (fractional part of \( x \)) takes values in the interval \( [0, 1) \). 6. **Find the intersection of the range of \( g(x) \) and the domain of \( f(x) \)**: - The range of \( g(x) \) is \( [0, 1) \). - The domain of \( f(x) \) is \( (0, \frac{1}{e}) \). - The intersection of these intervals is \( (0, \frac{1}{e}) \). 7. **Conclusion**: - The range of \( g(x) \) for which \( f(g(x)) \) exists is \( (0, \frac{1}{e}) \). ### Final Answer The range of \( g(x) \) for the existence of \( f(g(x)) \) is \( (0, \frac{1}{e}) \). ---

To solve the problem, we need to analyze the functions \( f(x) \) and \( g(x) \) and determine the range of \( g(x) \) for which \( f(g(x)) \) exists. ### Step-by-Step Solution 1. **Identify the functions**: - Given \( f(x) = \log_{e^{2x}} \left( \frac{2\ln x + 2}{-x} \right) \) - Given \( g(x) = \{ x \} \) (the fractional part of \( x \)) ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

For x in R, f(x) = | log 2- sin x| and g(x) = f(f(x)) , then

If f(x) = x log x and g(x) = 10^(x) , then g(f(2)) =

If f(x)=log_x(lnx) then f'(x) at x=e is

If f(x)=log_(10)x and g(x)=e^(ln x) and h(x)=f [g(x)] , then find the value of h(10).

if f(x)=e^(x) and g(x)=sinx , then the value of (f@g)(sqrt(2)) is

If f(x+2)=3x+11 and g(f(x))=2x, find the value of g(5).

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

f(x)=log_(x^(2)) 25 and g(x)=log_(x)5. Then f(x)=g(x) holds for x belonging to

If f(x)=e^(x) and g(x)=(x)/(2) , then g(f(2))=

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. Let f(x) = (1)/(sqrt(|x-1|-[x])) where[.] denotes the greatest intege...

    Text Solution

    |

  2. Let f(x)=[9^x-3^x+1] for all x in (-oo, 1), then the range of f(x) is,...

    Text Solution

    |

  3. If f(x) = log(e^2x) ((2lnx+2)/(-x)) and g(x) = {x} then range of g(x) ...

    Text Solution

    |

  4. f(x)=cos^(-1)sqrt(log([x])""abs(x)/x), where [*] denotes the greatest ...

    Text Solution

    |

  5. period the function f(x)=(sin{sin(n x)})/(tan (x/n)), nin N, is 6pi ...

    Text Solution

    |

  6. If[.] and {.} denote greatest integer and fractional part functions r...

    Text Solution

    |

  7. The domain of the funciton f(x) given by 3^(x) + 3^(f) = "min" (2t^(3...

    Text Solution

    |

  8. Let f:(4,6)vec(6,8) be a function defined by f(x)=x+[x/2]dotw h e r e[...

    Text Solution

    |

  9. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  10. The range of the function f(x)=(x^2+x+2)/(x^2+x+1),x in R , is (1,oo)...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. If f: RvecS , defined by f(x)=sinx-sqrt(3)cosx+1,is onto , then find ...

    Text Solution

    |

  13. The graph of the function y=f(x) is symmetrical about the line x=2, th...

    Text Solution

    |

  14. The domain of the function f(x)=sin^(-1)((8(3)^(x-2))/(1-3^(2(x-1)))) ...

    Text Solution

    |

  15. find the value of the

    Text Solution

    |

  16. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |

  17. Let f(x)=sin((pi)/(6)sin((pi)/(2)sinx)) " for all "x in R and g(x)=(pi...

    Text Solution

    |

  18. Consider the function f defined on the set of all non-negative interg...

    Text Solution

    |

  19. In a function 2f(x)+ xf(1/x)-2f(|sqrt2sin(pi(x+1/4))|)=4cos^2[(pix)/2]...

    Text Solution

    |

  20. Let X be the set of all positive such that f(x+y) = f(xy) for all x g...

    Text Solution

    |