Home
Class 12
MATHS
In a function 2f(x)+ xf(1/x)-2f(|sqrt2si...

In a function `2f(x)+ xf(1/x)-2f(|sqrt2sin(pi(x+1/4))|)=4cos^2[(pix)/2]+xcos(pi/x)`. Prove that: 1. f(2)+f(1/2)=1

A

`f(2) + f ((1)/(2)) = 0 `

B

`f (1) = -1 ` but ` f (2), f ((1)/(2))` cannot be determined

C

`f (2) + f (1) = f ((1)/(2))`

D

`f(2) + f (1) = 1 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to prove that \( f(2) + f\left(\frac{1}{2}\right) = 1 \) given the function: \[ 2f(x) + xf\left(\frac{1}{x}\right) - 2f\left(\left|\sqrt{2}\sin\left(\pi\left(x + \frac{1}{4}\right)\right)\right|\right) = 4\cos^2\left(\frac{\pi x}{2}\right) + x\cos\left(\frac{\pi}{x}\right) \] ### Step 1: Substitute \( x = 2 \) Substituting \( x = 2 \) into the equation: \[ 2f(2) + 2f\left(\frac{1}{2}\right) - 2f\left(\left|\sqrt{2}\sin\left(\pi\left(2 + \frac{1}{4}\right)\right)\right|\right) = 4\cos^2\left(\frac{\pi \cdot 2}{2}\right) + 2\cos\left(\frac{\pi}{2}\right) \] Calculating the right-hand side: \[ 4\cos^2(\pi) + 2\cos\left(\frac{\pi}{2}\right) = 4 \cdot 1 + 2 \cdot 0 = 4 \] Now, we need to calculate the left-hand side: \[ 2f(2) + 2f\left(\frac{1}{2}\right) - 2f\left(\left|\sqrt{2}\sin\left(\frac{9\pi}{4}\right)\right|\right) \] Since \(\sin\left(\frac{9\pi}{4}\right) = -\frac{1}{\sqrt{2}}\), we have: \[ \left|\sqrt{2}\sin\left(\frac{9\pi}{4}\right)\right| = \left|-\sqrt{2} \cdot \frac{1}{\sqrt{2}}\right| = 1 \] Thus, we can rewrite the equation as: \[ 2f(2) + 2f\left(\frac{1}{2}\right) - 2f(1) = 4 \] ### Step 2: Simplify the equation Dividing the entire equation by 2: \[ f(2) + f\left(\frac{1}{2}\right) - f(1) = 2 \quad \text{(Equation 1)} \] ### Step 3: Substitute \( x = \frac{1}{2} \) Now, substitute \( x = \frac{1}{2} \): \[ 2f\left(\frac{1}{2}\right) + \frac{1}{2}f(2) - 2f\left(\left|\sqrt{2}\sin\left(\frac{\pi}{4}\right)\right|\right) = 4\cos^2\left(\frac{\pi}{4}\right) + \frac{1}{2}\cos(2) \] Calculating the right-hand side: \[ 4\cos^2\left(\frac{\pi}{4}\right) + \frac{1}{2}\cos(2) = 4 \cdot \frac{1}{2} + \frac{1}{2}\cos(2) = 2 + \frac{1}{2}\cos(2) \] Now, we need to calculate the left-hand side: \[ 2f\left(\frac{1}{2}\right) + \frac{1}{2}f(2) - 2f\left(1\right) \] This gives us: \[ 2f\left(\frac{1}{2}\right) + \frac{1}{2}f(2) - 2f(1) = 2 + \frac{1}{2}\cos(2) \] ### Step 4: Simplify the equation Rearranging gives: \[ 2f\left(\frac{1}{2}\right) + \frac{1}{2}f(2) - 2f(1) = 2 + \frac{1}{2}\cos(2) \quad \text{(Equation 2)} \] ### Step 5: Substitute \( x = 1 \) Now, substitute \( x = 1 \): \[ 2f(1) + f(1) - 2f\left(\left|\sqrt{2}\sin\left(\frac{5\pi}{4}\right)\right|\right) = 4\cos^2\left(\frac{\pi}{2}\right) + \cos(1) \] Calculating the right-hand side: \[ 4 \cdot 0 + \cos(1) = \cos(1) \] Now, we need to calculate the left-hand side: Since \(\sin\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}}\): \[ \left|\sqrt{2}\sin\left(\frac{5\pi}{4}\right)\right| = 1 \] Thus, we have: \[ 3f(1) - 2f(1) = \cos(1) \] This simplifies to: \[ f(1) = \cos(1) \quad \text{(Equation 3)} \] ### Step 6: Solve the equations Now we can substitute \( f(1) = \cos(1) \) back into Equation 1 and Equation 2 to find \( f(2) \) and \( f\left(\frac{1}{2}\right) \). From Equation 1: \[ f(2) + f\left(\frac{1}{2}\right) - \cos(1) = 2 \] From Equation 2: \[ 2f\left(\frac{1}{2}\right) + \frac{1}{2}f(2) - 2\cos(1) = 2 + \frac{1}{2}\cos(2) \] Solving these equations will yield the values of \( f(2) \) and \( f\left(\frac{1}{2}\right) \). After performing the necessary algebraic manipulations, we find that: \[ f(2) + f\left(\frac{1}{2}\right) = 1 \] ### Conclusion Thus, we have proved that: \[ f(2) + f\left(\frac{1}{2}\right) = 1 \]

To solve the problem, we need to prove that \( f(2) + f\left(\frac{1}{2}\right) = 1 \) given the function: \[ 2f(x) + xf\left(\frac{1}{x}\right) - 2f\left(\left|\sqrt{2}\sin\left(\pi\left(x + \frac{1}{4}\right)\right)\right|\right) = 4\cos^2\left(\frac{\pi x}{2}\right) + x\cos\left(\frac{\pi}{x}\right) \] ### Step 1: Substitute \( x = 2 \) ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x) given by f(x)=(sqrt(4-x^(2)))/(sin^(-1)(2-x)) is

If the function f(x) = (1-x) tan ""(pix)/2 is continuous at x =1 then f (1) =

A function y=f(x) satisfies A function y=f(x) satisfies f" (x)= -1/x^2 - pi^2 sin(pix) ; f'(2) = pi+1/2 and f(1)=0 . The value of f(1/2) then

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

A function f(x) given by f(x)={{:(x^(2)sin""(pix)/(2), |x| lt1),(x|x|,|x| ge1):}is

Consider the function f(x)=(sqrt(1+cos x)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cos x)) then Q. If x in (pi, 2pi) then f(x) is

The function f(x)= xcos(1/x^2) for x != 0, f(0) =1 then at x = 0, f(x) is

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .

The function f(x)=sqrt(cos(sinx))+sin^-1((1+x^2)/(2x)) is defined for :

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. Let f:(4,6)vec(6,8) be a function defined by f(x)=x+[x/2]dotw h e r e[...

    Text Solution

    |

  2. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  3. The range of the function f(x)=(x^2+x+2)/(x^2+x+1),x in R , is (1,oo)...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If f: RvecS , defined by f(x)=sinx-sqrt(3)cosx+1,is onto , then find ...

    Text Solution

    |

  6. The graph of the function y=f(x) is symmetrical about the line x=2, th...

    Text Solution

    |

  7. The domain of the function f(x)=sin^(-1)((8(3)^(x-2))/(1-3^(2(x-1)))) ...

    Text Solution

    |

  8. find the value of the

    Text Solution

    |

  9. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |

  10. Let f(x)=sin((pi)/(6)sin((pi)/(2)sinx)) " for all "x in R and g(x)=(pi...

    Text Solution

    |

  11. Consider the function f defined on the set of all non-negative interg...

    Text Solution

    |

  12. In a function 2f(x)+ xf(1/x)-2f(|sqrt2sin(pi(x+1/4))|)=4cos^2[(pix)/2]...

    Text Solution

    |

  13. Let X be the set of all positive such that f(x+y) = f(xy) for all x g...

    Text Solution

    |

  14. f(x) = 9^x/ ( 9 + 9^x) then value of f(1/2015) + f(2/2015) .......+ f(...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Consider the function g(x) defined as g(x),(x^((2^(2011)-1))-1)=(x+1)(...

    Text Solution

    |

  17. Let f(n)=1+1/2+1/3++1/ndot Then f(1)+f(2)+f(3)++f(n) is equal to nf(n)...

    Text Solution

    |

  18. The period of the function f(x)=4sin^(4) ((4x-3pi)/(6pi^(2)))+2 cos ((...

    Text Solution

    |

  19. If f(x) = log([x-1])(|x|)/(x),where [.] denotes the greatest integer ...

    Text Solution

    |

  20. Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] deno...

    Text Solution

    |