Home
Class 12
MATHS
f(x) = 9^x/ ( 9 + 9^x) then value of f(1...

`f(x) = 9^x/ ( 9 + 9^x)` then value of `f(1/2015) + f(2/2015) .......+ f(4029/2015)`

A

1007

B

`(4029)/(2)`

C

2014

D

2015

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the function given: **Step 1:** Define the function. \[ f(x) = \frac{9^x}{9 + 9^x} \] **Step 2:** Simplify the function. We can rewrite \( f(x) \) by dividing the numerator and denominator by \( 9^x \): \[ f(x) = \frac{9^x}{9 + 9^x} = \frac{1}{\frac{9}{9^x} + 1} = \frac{1}{\frac{9}{9^x} + 1} = \frac{1}{\frac{9}{9^x} + 1} = \frac{1}{9^{1-x} + 1} \] **Step 3:** Calculate \( f\left(\frac{k}{2015}\right) \) for \( k = 1, 2, \ldots, 4029 \). We will find \( f\left(\frac{k}{2015}\right) \): \[ f\left(\frac{k}{2015}\right) = \frac{1}{9^{1 - \frac{k}{2015}} + 1} = \frac{1}{9^{\frac{2015 - k}{2015}} + 1} \] **Step 4:** Find \( f\left(\frac{4029 - k}{2015}\right) \). Now, we can also calculate: \[ f\left(\frac{4029 - k}{2015}\right) = \frac{1}{9^{1 - \frac{4029 - k}{2015}} + 1} = \frac{1}{9^{\frac{4029 - 2015 + k}{2015}} + 1} = \frac{1}{9^{\frac{2014 + k}{2015}} + 1} \] **Step 5:** Add \( f\left(\frac{k}{2015}\right) \) and \( f\left(\frac{4029 - k}{2015}\right) \). Now, we can observe that: \[ f\left(\frac{k}{2015}\right) + f\left(\frac{4029 - k}{2015}\right) = \frac{1}{9^{\frac{2015 - k}{2015}} + 1} + \frac{1}{9^{\frac{2014 + k}{2015}} + 1} \] **Step 6:** Simplify the sum. Using the property of the function: \[ f(x) + f(1-x) = 1 \] We can conclude that: \[ f\left(\frac{k}{2015}\right) + f\left(\frac{4029 - k}{2015}\right) = 1 \] **Step 7:** Count the number of pairs. Since \( k \) ranges from \( 1 \) to \( 4029 \), we have \( 4029 \) terms. The pairs will be \( (1, 4028), (2, 4027), \ldots, (2014, 2015) \), which gives us \( 2014 \) pairs plus the middle term \( f(2015/2015) = f(1) \). **Step 8:** Calculate \( f(1) \). \[ f(1) = \frac{9^1}{9 + 9^1} = \frac{9}{9 + 9} = \frac{9}{18} = \frac{1}{2} \] **Step 9:** Calculate the total sum. The total sum is: \[ 2014 \cdot 1 + \frac{1}{2} = 2014 + \frac{1}{2} = 2014.5 = \frac{4029}{2} \] Thus, the final answer is: \[ \boxed{\frac{4029}{2}} \]

To solve the problem step by step, we start with the function given: **Step 1:** Define the function. \[ f(x) = \frac{9^x}{9 + 9^x} \] **Step 2:** Simplify the function. ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

If f(x) = 9x^(2) + 5x - 8 , then f(-2) = ?

If f(x+2)=x^(2)-x+9 , then what is the value of f(-6)?

Let f(x)=a-(x-3)^(8//9) then greatest value of f(x) is

If f(x)=a-(x-3)^(8//9) , then the maximum value of f(x) is

f(x)=sqrt(9-x^(2)) . find range of f(x).

The function f(x) is defined as follows: {:(,f(x) = x^(2) -1 , if x le 3),(,f(x) = 2x + 2 , if 3 lt x le 9),(,f(x) = 4x - 8, if x gt 9):} What is the value of k if f(f(f(3))) = (k+1)^(2) where k is positive integer ?

For f(x ,y)= 7x +9y , what is the value of f(x,y) when y =((5)/(x))^(2) and x=3 ?

If f(x)=2x-1, find the value of x that makes f(f(x))=9.

If f : R to R is defined as: f(x)={{:(2x+5","x gt 9),(x^(2)-1","-9 lt x lt 9),(x-4"," x lt -9):} then evaluate (i) f(2), (ii) f(10),(iii) f(-12) and (iv) f[f(3)] .

Let f(x)=(9^x)/(9^x+3) . Show f(x)+f(1-x)=1 and, hence, evaluate. f(1/(1996))+f(2/(1996))+f(3/(1996))++f((1995)/(1996))

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. Let f:(4,6)vec(6,8) be a function defined by f(x)=x+[x/2]dotw h e r e[...

    Text Solution

    |

  2. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  3. The range of the function f(x)=(x^2+x+2)/(x^2+x+1),x in R , is (1,oo)...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If f: RvecS , defined by f(x)=sinx-sqrt(3)cosx+1,is onto , then find ...

    Text Solution

    |

  6. The graph of the function y=f(x) is symmetrical about the line x=2, th...

    Text Solution

    |

  7. The domain of the function f(x)=sin^(-1)((8(3)^(x-2))/(1-3^(2(x-1)))) ...

    Text Solution

    |

  8. find the value of the

    Text Solution

    |

  9. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |

  10. Let f(x)=sin((pi)/(6)sin((pi)/(2)sinx)) " for all "x in R and g(x)=(pi...

    Text Solution

    |

  11. Consider the function f defined on the set of all non-negative interg...

    Text Solution

    |

  12. In a function 2f(x)+ xf(1/x)-2f(|sqrt2sin(pi(x+1/4))|)=4cos^2[(pix)/2]...

    Text Solution

    |

  13. Let X be the set of all positive such that f(x+y) = f(xy) for all x g...

    Text Solution

    |

  14. f(x) = 9^x/ ( 9 + 9^x) then value of f(1/2015) + f(2/2015) .......+ f(...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Consider the function g(x) defined as g(x),(x^((2^(2011)-1))-1)=(x+1)(...

    Text Solution

    |

  17. Let f(n)=1+1/2+1/3++1/ndot Then f(1)+f(2)+f(3)++f(n) is equal to nf(n)...

    Text Solution

    |

  18. The period of the function f(x)=4sin^(4) ((4x-3pi)/(6pi^(2)))+2 cos ((...

    Text Solution

    |

  19. If f(x) = log([x-1])(|x|)/(x),where [.] denotes the greatest integer ...

    Text Solution

    |

  20. Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] deno...

    Text Solution

    |