Home
Class 12
MATHS
If f(x) = log([x-1])(|x|)/(x),where [.]...

If `f(x) = log_([x-1])(|x|)/(x)`,where [.] denotes the greatest integer function,then

A

`D(f) = [3, oo), R(f) = {0, 1} `

B

`D(f) = [ 3, oo), R(f) = [3, oo), R(f)= {0}`

C

`D(f) = (2, oo), R(f) = {0, 1}`

D

`D(f) = (3, oo), R(f) = {0}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \log_{[\text{greatest integer}(x) - 1]} \left( \frac{|x|}{x} \right) \), where \([\cdot]\) denotes the greatest integer function. We will determine the domain and range of this function step by step. ### Step 1: Determine the conditions for the logarithm The logarithm \( \log_a(b) \) is defined under the following conditions: 1. The base \( a \) must be greater than 0 and not equal to 1. 2. The argument \( b \) must be greater than 0. ### Step 2: Analyze the base of the logarithm The base of our logarithm is \( [x] - 1 \). - For \( [x] - 1 > 0 \): This implies \( [x] > 1 \) or \( x \geq 2 \). - For \( [x] - 1 \neq 1 \): This implies \( [x] \neq 2 \) or \( x \notin [2, 3) \). Combining these two conditions, we find: - \( x \) must be in the intervals \( [3, \infty) \). ### Step 3: Analyze the argument of the logarithm The argument of the logarithm is \( \frac{|x|}{x} \). - This expression is equal to 1 for \( x > 0 \) and -1 for \( x < 0 \). - Since we are considering \( x \geq 3 \), \( \frac{|x|}{x} = 1 \) which is always greater than 0. ### Step 4: Combine the conditions for the domain From the analysis above, the domain of \( f(x) \) is: - \( x \in [3, \infty) \). ### Step 5: Determine the range of the function Now we need to find the range of \( f(x) \): - Since \( \frac{|x|}{x} = 1 \) for \( x \geq 3 \), we have: \[ f(x) = \log_{[\text{greatest integer}(x) - 1]}(1) \] - The logarithm of 1 in any base (as long as the base is valid) is 0: \[ f(x) = 0 \quad \text{for } x \in [3, \infty) \] ### Conclusion The function \( f(x) \) is constant and equal to 0 for all \( x \) in the domain. Therefore, the domain and range of the function are: - **Domain**: \( [3, \infty) \) - **Range**: \( \{0\} \) (a singleton set) ### Final Answer - Domain: \( [3, \infty) \) - Range: \( \{0\} \)

To solve the problem, we need to analyze the function \( f(x) = \log_{[\text{greatest integer}(x) - 1]} \left( \frac{|x|}{x} \right) \), where \([\cdot]\) denotes the greatest integer function. We will determine the domain and range of this function step by step. ### Step 1: Determine the conditions for the logarithm The logarithm \( \log_a(b) \) is defined under the following conditions: 1. The base \( a \) must be greater than 0 and not equal to 1. 2. The argument \( b \) must be greater than 0. ### Step 2: Analyze the base of the logarithm ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

if f(x) = cos pi (|x|+[x]), where [.] denotes the greatest integer , function then which is not true ?

The domain of function f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), where [.] denotes the greatest integer function is :

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Section I - Solved Mcqs
  1. Let f:(4,6)vec(6,8) be a function defined by f(x)=x+[x/2]dotw h e r e[...

    Text Solution

    |

  2. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  3. The range of the function f(x)=(x^2+x+2)/(x^2+x+1),x in R , is (1,oo)...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If f: RvecS , defined by f(x)=sinx-sqrt(3)cosx+1,is onto , then find ...

    Text Solution

    |

  6. The graph of the function y=f(x) is symmetrical about the line x=2, th...

    Text Solution

    |

  7. The domain of the function f(x)=sin^(-1)((8(3)^(x-2))/(1-3^(2(x-1)))) ...

    Text Solution

    |

  8. find the value of the

    Text Solution

    |

  9. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |

  10. Let f(x)=sin((pi)/(6)sin((pi)/(2)sinx)) " for all "x in R and g(x)=(pi...

    Text Solution

    |

  11. Consider the function f defined on the set of all non-negative interg...

    Text Solution

    |

  12. In a function 2f(x)+ xf(1/x)-2f(|sqrt2sin(pi(x+1/4))|)=4cos^2[(pix)/2]...

    Text Solution

    |

  13. Let X be the set of all positive such that f(x+y) = f(xy) for all x g...

    Text Solution

    |

  14. f(x) = 9^x/ ( 9 + 9^x) then value of f(1/2015) + f(2/2015) .......+ f(...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Consider the function g(x) defined as g(x),(x^((2^(2011)-1))-1)=(x+1)(...

    Text Solution

    |

  17. Let f(n)=1+1/2+1/3++1/ndot Then f(1)+f(2)+f(3)++f(n) is equal to nf(n)...

    Text Solution

    |

  18. The period of the function f(x)=4sin^(4) ((4x-3pi)/(6pi^(2)))+2 cos ((...

    Text Solution

    |

  19. If f(x) = log([x-1])(|x|)/(x),where [.] denotes the greatest integer ...

    Text Solution

    |

  20. Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] deno...

    Text Solution

    |