Home
Class 12
MATHS
Let f(x)=(sqrt(sinx))/(1+(sinx)^(1/3)) ...

Let `f(x)=(sqrt(sinx))/(1+(sinx)^(1/3))` then domain `f` contains

A

`(0,pi)`

B

`(-2pi,-pi)`

C

`(3pi,4pi)`

D

`(4pi,6pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{\sqrt{\sin x}}{1 + (\sin x)^{1/3}} \), we need to consider the conditions under which this function is defined. ### Step 1: Determine when the square root is defined The square root function \( \sqrt{\sin x} \) is defined when \( \sin x \geq 0 \). Therefore, we have: \[ \sin x \geq 0 \] ### Step 2: Determine when the denominator is defined The denominator \( 1 + (\sin x)^{1/3} \) must not be equal to zero: \[ 1 + (\sin x)^{1/3} \neq 0 \] This simplifies to: \[ (\sin x)^{1/3} \neq -1 \] Cubing both sides gives: \[ \sin x \neq -1 \] ### Step 3: Combine the conditions From the above steps, we have two conditions: 1. \( \sin x \geq 0 \) 2. \( \sin x \neq -1 \) ### Step 4: Analyze the sine function The sine function is non-negative in the intervals: - \( [0, \pi] \) - \( [2\pi, 3\pi] \) - \( [4\pi, 5\pi] \) - ... The sine function equals \(-1\) at \( x = \frac{3\pi}{2} + 2k\pi \) for any integer \( k \). ### Step 5: Identify the intervals where the conditions hold - In the interval \( [0, \pi] \), \( \sin x \) is non-negative and does not equal \(-1\). - In the interval \( [-2\pi, -\pi] \), \( \sin x \) is also non-negative and does not equal \(-1\). - In the interval \( [3\pi, 4\pi] \), \( \sin x \) is negative, so this interval is excluded. - In the interval \( [4\pi, 5\pi] \), \( \sin x \) is again non-negative. ### Conclusion Thus, the domain of \( f(x) \) contains the intervals: - \( [0, \pi] \) - \( [-2\pi, -\pi] \) - \( [4\pi, 5\pi] \) ### Final Answer The domain of \( f \) contains: - \( [0, \pi] \) - \( [-2\pi, -\pi] \)
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(a-x)/(a+x) , the domain of f^(-1)(x) contains

If f(x) =sqrt(4-x^(2)) +1/(sqrt(abs(sinx)-sinx)) , then the-domain of f(x) is

Let f(x) = ln ((1-sinx)/(1+sinx)) , then show that int_(a)^(b) f(x)dx = int_(b)^(a) ln((1+sinx)/(1-sinx))dx .

The function f(x)=log((1+sinx)/(1-sinx)) is

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

"If " int sqrt(1+sinx) f(x)dx=(2)/(3)(1+sinx)^(3//2)+c, " then " f(x) " equals "

Let f(x)=((2sinx+sin2x)/(2cosx+sin2x)*(1-cosx)/(1-sinx)): x in R. Consider the following statements. I. Domain of f is R. II. Range of f is R. III. Domain of f is R-(4n-1)pi/2, n in I. IV. Domain of f is R-(4n+1)pi/2, n in I. Which of the following is correct?

Let f(x)=2x-sinx and g(x) = 3^(sqrtx) . Then

The integral I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C (where, C is the constant of integration). Then, the range of y=f(x) (for all x in the domain of f(x) ) is

If f(x) is defined on (0,1) , then the domain of f(sinx) is

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

    Text Solution

    |

  2. The domain of the function f(x)=log(10) (sqrt(x-4)+sqrt(6-x)) is :

    Text Solution

    |

  3. Let f(x)=(sqrt(sinx))/(1+(sinx)^(1/3)) then domain f contains

    Text Solution

    |

  4. If f : R -> R is defined by f(x) = [2x] - 2[x] for x in R, where [x] i...

    Text Solution

    |

  5. If N denotes the set of all positive integers and if f : N -> N is def...

    Text Solution

    |

  6. The set of value of a for which the function f(x)=sinx+[(x^(2))/(a)] d...

    Text Solution

    |

  7. If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt ...

    Text Solution

    |

  8. Find the equivalent definition of f(x)=max.{x^(2),(1-x)^(2),2x(1-x)...

    Text Solution

    |

  9. If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

    Text Solution

    |

  10. The function f(x) is defined in [0,1] . Find the domain of f(t a nx)do...

    Text Solution

    |

  11. The domain of definition of the real function f(x)=sqrt(log(12)x^(2)) ...

    Text Solution

    |

  12. The values of ba n dc for which the identity of f(x+1)-f(x)=8x+3 is sa...

    Text Solution

    |

  13. The function f(x)=sin""(pix)/(2)+2 cos ""(pix)/(3)-tan""(pix)/(4) is p...

    Text Solution

    |

  14. The period of the function sin""((pix)/(2))+cos((pix)/(2)), is

    Text Solution

    |

  15. If x in R, then f(x)=sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  16. If x in R , then f(x)=cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

    Text Solution

    |

  17. The equivalent definition of the function f(x)=lim(n to oo)(x^(n)-x^(-...

    Text Solution

    |

  18. Find the domain of definitions of the following function: f(x)=log(10)...

    Text Solution

    |

  19. The domain of definition of f(x)=log(0.5){-log(2)((3x-1)/(3x+2))}, is

    Text Solution

    |

  20. Find the domain of the function : f(x)=sqrt(((log)(0. 2)|x-2|)/(|x|))

    Text Solution

    |