Home
Class 12
MATHS
The value of x for which y=log(2){-log(1...

The value of x for which `y=log_(2){-log_(1//2)(1+(1)/(x^(1//4)))-1}` is a real number are

A

[0,1]

B

(0,1)

C

`[1,oo)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( y = \log_{2} \left( -\log_{\frac{1}{2}} \left( 1 + \frac{1}{x^{\frac{1}{4}}} \right) - 1 \right) \) and find the values of \( x \) for which \( y \) is a real number, we need to follow these steps: ### Step 1: Determine the conditions for the logarithm The logarithm \( \log_{2}(A) \) is defined when \( A > 0 \). Therefore, we need: \[ -\log_{\frac{1}{2}} \left( 1 + \frac{1}{x^{\frac{1}{4}}} \right) - 1 > 0 \] This simplifies to: \[ -\log_{\frac{1}{2}} \left( 1 + \frac{1}{x^{\frac{1}{4}}} \right) > 1 \] ### Step 2: Rearranging the inequality Multiplying both sides by -1 (which reverses the inequality): \[ \log_{\frac{1}{2}} \left( 1 + \frac{1}{x^{\frac{1}{4}}} \right) < -1 \] ### Step 3: Understanding the logarithm base The logarithm \( \log_{\frac{1}{2}}(B) \) is negative when \( B < 1 \) because the base \( \frac{1}{2} < 1 \). Therefore, we need: \[ 1 + \frac{1}{x^{\frac{1}{4}}} < \frac{1}{2^{-1}} = 2 \] ### Step 4: Simplifying the inequality Subtracting 1 from both sides gives: \[ \frac{1}{x^{\frac{1}{4}}} < 1 \] This can be rewritten as: \[ \frac{1}{x^{\frac{1}{4}}} - 1 < 0 \] ### Step 5: Further manipulation Rearranging gives: \[ \frac{1 - x^{\frac{1}{4}}}{x^{\frac{1}{4}}} < 0 \] This inequality holds when the numerator and denominator have opposite signs. ### Step 6: Analyzing the signs 1. **Denominator**: \( x^{\frac{1}{4}} > 0 \) when \( x > 0 \). 2. **Numerator**: \( 1 - x^{\frac{1}{4}} < 0 \) implies \( x^{\frac{1}{4}} > 1 \), or \( x > 1 \). ### Step 7: Combining the conditions Thus, we have: - \( x > 0 \) (from the denominator) - \( x > 1 \) (from the numerator) ### Conclusion The values of \( x \) for which \( y \) is a real number are: \[ x > 1 \]
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The value of x, log_(1/2)x >= log_(1/3)x is

The number of integral values of a for which f(x)="log"((log)_(1/3)((log)_7(sinx+a))) is defined for every real value of x is ________

The domain of definition of the function f(x) = log_(3) {-log_(1//2)(1+(1)/(x^(1//5)))-1}

The domain of the function f(x)=log_(1//2)(-log_(2)(1+1/(root(4)(x)))-1) is:

Find the values of x which the function f(x)=sqrt(log_(1//2)((x-1)/(x+5)) is defined.

log_(1/4)((35-x^2)/x)geq-1/2

Domain of definition of the function f(x) = log_2 (-log_(1/2) (1+x^(-4))-1) is

The set of real values of x satisfying the inequality log_(x+1/x)(log_2((x-1)/(x+2))) gt 0, is equal to

Find the value of x satisfying the equations log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y)=1 and xy^(2)=9

The set of real values of x satisfying log_(1/2) (x^2-6x+12)>=-2

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. The domain of definition of f(x)=log(1.7)((2-phi'(x))/(x+1))^(1//2), w...

    Text Solution

    |

  2. f(x)=log(100x)((2log(10)x+1)/(-x)) exists, if …. .

    Text Solution

    |

  3. The value of x for which y=log(2){-log(1//2)(1+(1)/(x^(1//4)))-1} is a...

    Text Solution

    |

  4. Find the domain of the function f(x)=log10((log10 x^2)-5log10 x+6)

    Text Solution

    |

  5. Find the domain of the following function: f(x)=(x+0.5)^(log(0.5+x)^((...

    Text Solution

    |

  6. The domain of f(x)=3/(4-x^2)+log(10) (x^3-x) (1) (-1,0)uu(1,2)uu(3,oo)...

    Text Solution

    |

  7. The equivalent definition of f(x)=||x|-1|, is

    Text Solution

    |

  8. If f(x)||x|-1|, then fof(x) equals

    Text Solution

    |

  9. Find the range of f(x)=sec(pi/4cos^2x), where -oo<x<oo

    Text Solution

    |

  10. The period of f(x)=sin((pix)/(n-1))+ cos ((pix)/(n)), n in Z, n gt 2,...

    Text Solution

    |

  11. The function f(x)=((1)/(2))^(sinx), is

    Text Solution

    |

  12. If [x] and {x} represent the integral and fractional parts of x respe...

    Text Solution

    |

  13. Let f(x)={{:( 0,x=0),(x^(2) sin pi//2x,|x| lt 1),(x|x|, |x| ge 1):}. T...

    Text Solution

    |

  14. Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(...

    Text Solution

    |

  15. The domain of definition of the function f(x)=tan((pi)/([x+2])), is wh...

    Text Solution

    |

  16. The range of the function f(x)=sin [log (sqrt(4-x^(2))/(1-x)) is :

    Text Solution

    |

  17. The range of the function y=(x+2)/(x^2-8x-4)

    Text Solution

    |

  18. The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in ...

    Text Solution

    |

  19. The period of the function f(x)=|sin 3x|+| cos 3x| , is

    Text Solution

    |

  20. The function f(x)={{:( 1, x in Q),(0, x notin Q):}, is

    Text Solution

    |