Home
Class 12
MATHS
The equivalent definition of f(x)=||x|-1...

The equivalent definition of `f(x)=||x|-1|`, is

A

`f(x)={{:( -x-1, x le -1),(x+1, -1 lt x le 0),( 1-x, 0 le x le 1), (x-1,x le 1):}`

B

`f(x)={{:(x-1,x le -1),(x+1,-1 lt x le 0),(x-1, 0 le x le 1),(x+1, x ge 1):}`

C

`f(x)={{:( x+1, x ge 0), (x+1, x le0):}`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the equivalent definition of the function \( f(x) = ||x| - 1| \), we will analyze the function step by step. ### Step 1: Understanding the Inner Modulus The function \( f(x) = ||x| - 1| \) consists of two modulus operations. The inner modulus \( |x| - 1 \) needs to be evaluated first. **Hint:** Recall that the modulus function \( |a| \) is defined as: - \( a \) if \( a \geq 0 \) - \( -a \) if \( a < 0 \) ### Step 2: Analyzing \( |x| \) The expression \( |x| \) is non-negative for all \( x \). Therefore, we can break it down into cases based on the value of \( x \). 1. **Case 1:** \( x \geq 0 \) - Here, \( |x| = x \) - Thus, \( |x| - 1 = x - 1 \) 2. **Case 2:** \( x < 0 \) - Here, \( |x| = -x \) - Thus, \( |x| - 1 = -x - 1 \) ### Step 3: Evaluating \( ||x| - 1| \) Now we will evaluate \( ||x| - 1| \) for both cases. 1. **For \( x \geq 0 \):** - We need to evaluate \( |x - 1| \). - This can be broken into two sub-cases: - If \( x \geq 1 \): \( |x - 1| = x - 1 \) - If \( 0 \leq x < 1 \): \( |x - 1| = 1 - x \) 2. **For \( x < 0 \):** - We need to evaluate \( |-x - 1| \). - This can also be broken into two sub-cases: - If \( -x - 1 \geq 0 \) (which simplifies to \( x \leq -1 \)): \( |-x - 1| = -(-x - 1) = x + 1 \) - If \( -x - 1 < 0 \) (which simplifies to \( -1 < x < 0 \)): \( |-x - 1| = -(-x - 1) = -x - 1 \) ### Step 4: Combining All Cases Now we can summarize the function \( f(x) \) based on the cases we have analyzed: 1. **If \( x \leq -1 \):** - \( f(x) = x + 1 \) 2. **If \( -1 < x < 0 \):** - \( f(x) = -x - 1 \) 3. **If \( 0 \leq x < 1 \):** - \( f(x) = 1 - x \) 4. **If \( x \geq 1 \):** - \( f(x) = x - 1 \) ### Final Result Thus, the equivalent definition of the function \( f(x) = ||x| - 1| \) can be expressed as: \[ f(x) = \begin{cases} x + 1 & \text{if } x \leq -1 \\ -x - 1 & \text{if } -1 < x < 0 \\ 1 - x & \text{if } 0 \leq x < 1 \\ x - 1 & \text{if } x \geq 1 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Find the equivalent definition of f(x)=max{x^2,(1-x)^2,2x(1-x)} where 0lt=xlt=1

Find the equivalent definition of f(x)=m a xdot{x^2,(-x)^2,2x(1-x)}where 0lt=xlt=1

Draw the graph of the function f(x)=m a x{sinx ,cos2x},x in [0,2pi] . Write the equivalent definition of f(x) and find the range of the function.

Draw the graph of the function f(x)=m a xdot{sinx ,cos2x},x in [0,2pi]dot Write the equivalent definition of f(x) and find the range of the function.

Write the equivalent (piecewise) definition of f(x)=sgn(sinx)dot

The equivalent definition of the function f(x)=lim_(n to oo)(x^(n)-x^(-n))/(x^(n)+x^(-n)), x gt 0 , is

The domain of definition of f(x)=log_(3)|log_(e)x| , is

Write the equivalent definition and draw the graphs of the following functions. f(x)=sgn(x^3-x)

Write the equivalent definition and draw the graphs of the following functions. f(x)=sgn((log)_e|x|)

The domian of definition of f (x) = log _((x ^(2) -x+1)) (2x ^(2)-7x+9) is :

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. Find the domain of the following function: f(x)=(x+0.5)^(log(0.5+x)^((...

    Text Solution

    |

  2. The domain of f(x)=3/(4-x^2)+log(10) (x^3-x) (1) (-1,0)uu(1,2)uu(3,oo)...

    Text Solution

    |

  3. The equivalent definition of f(x)=||x|-1|, is

    Text Solution

    |

  4. If f(x)||x|-1|, then fof(x) equals

    Text Solution

    |

  5. Find the range of f(x)=sec(pi/4cos^2x), where -oo<x<oo

    Text Solution

    |

  6. The period of f(x)=sin((pix)/(n-1))+ cos ((pix)/(n)), n in Z, n gt 2,...

    Text Solution

    |

  7. The function f(x)=((1)/(2))^(sinx), is

    Text Solution

    |

  8. If [x] and {x} represent the integral and fractional parts of x respe...

    Text Solution

    |

  9. Let f(x)={{:( 0,x=0),(x^(2) sin pi//2x,|x| lt 1),(x|x|, |x| ge 1):}. T...

    Text Solution

    |

  10. Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(...

    Text Solution

    |

  11. The domain of definition of the function f(x)=tan((pi)/([x+2])), is wh...

    Text Solution

    |

  12. The range of the function f(x)=sin [log (sqrt(4-x^(2))/(1-x)) is :

    Text Solution

    |

  13. The range of the function y=(x+2)/(x^2-8x-4)

    Text Solution

    |

  14. The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in ...

    Text Solution

    |

  15. The period of the function f(x)=|sin 3x|+| cos 3x| , is

    Text Solution

    |

  16. The function f(x)={{:( 1, x in Q),(0, x notin Q):}, is

    Text Solution

    |

  17. Which of the following functions has period pi ?

    Text Solution

    |

  18. The function f(x)=x[x] , is

    Text Solution

    |

  19. If f(x) and g(x) are periodic functions with the same fundamental per...

    Text Solution

    |

  20. The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi], where ...

    Text Solution

    |