Home
Class 12
MATHS
If f(x)||x|-1|, then fof(x) equals...

If `f(x)||x|-1|`, then fof(x) equals

A

`f(x)={{:(|x|-2,|x| le 2),(2-|x|,1 lt |x| lt 2),(|x|,|x| le 1):}`

B

`f(x)={{:(|x|+2,|x| le 2),(|x|-2,1 le |x| le 2),(|x|,|x| le 1):}`

C

`f(x)={{:(|x|+2, |x| ge2),(2+|x|,1 le |x| le 2), (|x|,|x| le1):}`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(f(x)) \) where \( f(x) = ||x| - 1| \). ### Step 1: Understand the function \( f(x) \) The function \( f(x) = ||x| - 1| \) involves taking the absolute value twice. ### Step 2: Analyze the inner absolute value First, we need to analyze \( |x| - 1 \): - If \( |x| \geq 1 \), then \( |x| - 1 \geq 0 \) and \( f(x) = |x| - 1 \). - If \( |x| < 1 \), then \( |x| - 1 < 0 \) and \( f(x) = -( |x| - 1 ) = 1 - |x| \). ### Step 3: Define the cases for \( f(x) \) Thus, we can write \( f(x) \) as: 1. If \( |x| \geq 1 \): \[ f(x) = |x| - 1 \] 2. If \( |x| < 1 \): \[ f(x) = 1 - |x| \] ### Step 4: Calculate \( f(f(x)) \) Now we need to find \( f(f(x)) \). #### Case 1: \( |x| \geq 1 \) In this case, \( f(x) = |x| - 1 \). We need to evaluate \( f(f(x)) \): - Since \( |x| \geq 1 \), we have \( |x| - 1 \geq 0 \). Therefore, we use the first case for \( f \): \[ f(f(x)) = f(|x| - 1) = (|x| - 1) - 1 = |x| - 2 \] #### Case 2: \( |x| < 1 \) In this case, \( f(x) = 1 - |x| \). We need to evaluate \( f(f(x)) \): - Since \( |x| < 1 \), we have \( 1 - |x| > 0 \). Therefore, we again use the first case for \( f \): \[ f(f(x)) = f(1 - |x|) = (1 - |x|) - 1 = -|x| \] ### Step 5: Combine the results We can summarize our findings: - If \( |x| \geq 1 \), then \( f(f(x)) = |x| - 2 \). - If \( |x| < 1 \), then \( f(f(x)) = -|x| \). ### Final Answer Thus, the final answer for \( f(f(x)) \) is: \[ f(f(x)) = \begin{cases} |x| - 2 & \text{if } |x| \geq 1 \\ -|x| & \text{if } |x| < 1 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Let f(x) have a point of inflection at x=1 and let f^(")(x)=x. If f^(')(1)=0, then f(x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=|logx| , then for xne1,f'(x) equals

If f : R - {1} rarr R, f(x) = (x-3)/(x+1) , then f^(-1) (x) equals

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f(x+4) = x^(2) - 1 , then f(x) is equal to

If f(x)=sqrt(1-sin2x), then f'(x) equals

If A={x:(pi)/(6) lt x lt (pi)/(3)} and f(x) =cosx-x(1+x), then f(A) is equal to :

If f(x)={{:(,|x|, x le1),(,2-x,x gt 1):} , then fof (x) is equal to

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. The domain of f(x)=3/(4-x^2)+log(10) (x^3-x) (1) (-1,0)uu(1,2)uu(3,oo)...

    Text Solution

    |

  2. The equivalent definition of f(x)=||x|-1|, is

    Text Solution

    |

  3. If f(x)||x|-1|, then fof(x) equals

    Text Solution

    |

  4. Find the range of f(x)=sec(pi/4cos^2x), where -oo<x<oo

    Text Solution

    |

  5. The period of f(x)=sin((pix)/(n-1))+ cos ((pix)/(n)), n in Z, n gt 2,...

    Text Solution

    |

  6. The function f(x)=((1)/(2))^(sinx), is

    Text Solution

    |

  7. If [x] and {x} represent the integral and fractional parts of x respe...

    Text Solution

    |

  8. Let f(x)={{:( 0,x=0),(x^(2) sin pi//2x,|x| lt 1),(x|x|, |x| ge 1):}. T...

    Text Solution

    |

  9. Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(...

    Text Solution

    |

  10. The domain of definition of the function f(x)=tan((pi)/([x+2])), is wh...

    Text Solution

    |

  11. The range of the function f(x)=sin [log (sqrt(4-x^(2))/(1-x)) is :

    Text Solution

    |

  12. The range of the function y=(x+2)/(x^2-8x-4)

    Text Solution

    |

  13. The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in ...

    Text Solution

    |

  14. The period of the function f(x)=|sin 3x|+| cos 3x| , is

    Text Solution

    |

  15. The function f(x)={{:( 1, x in Q),(0, x notin Q):}, is

    Text Solution

    |

  16. Which of the following functions has period pi ?

    Text Solution

    |

  17. The function f(x)=x[x] , is

    Text Solution

    |

  18. If f(x) and g(x) are periodic functions with the same fundamental per...

    Text Solution

    |

  19. The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi], where ...

    Text Solution

    |

  20. If f(sinx)-f(-sinx)=x^(2)-1 is defined for all x in R , then the val...

    Text Solution

    |