Home
Class 12
MATHS
Let f(x)={{:( 0,x=0),(x^(2) sin pi//2x,|...

Let `f(x)={{:( 0,x=0),(x^(2) sin pi//2x,|x| lt 1),(x|x|, |x| ge 1):}`. Then , f(x) is

A

an even function

B

an odd function

C

neither an even function nor an add function

D

f'(x) is an even function

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the function \( f(x) \) given by: \[ f(x) = \begin{cases} 0 & \text{if } x = 0 \\ x^2 \sin\left(\frac{\pi}{2} x\right) & \text{if } |x| < 1 \\ x |x| & \text{if } |x| \geq 1 \end{cases} \] we will analyze the function step by step. ### Step 1: Check the value at \( x = 0 \) For \( x = 0 \): \[ f(0) = 0 \] ### Step 2: Check the behavior for \( |x| < 1 \) For \( |x| < 1 \): \[ f(x) = x^2 \sin\left(\frac{\pi}{2} x\right) \] Now, we will check \( f(-x) \): \[ f(-x) = (-x)^2 \sin\left(\frac{\pi}{2} (-x)\right) = x^2 \sin\left(-\frac{\pi}{2} x\right) = -x^2 \sin\left(\frac{\pi}{2} x\right) \] ### Step 3: Check if \( f(x) \) is odd To check if \( f(x) \) is odd, we need to see if \( f(-x) = -f(x) \): \[ f(-x) = -x^2 \sin\left(\frac{\pi}{2} x\right) \quad \text{and} \quad -f(x) = -\left(x^2 \sin\left(\frac{\pi}{2} x\right)\right) = -x^2 \sin\left(\frac{\pi}{2} x\right) \] Thus, for \( |x| < 1 \): \[ f(-x) = -f(x) \] ### Step 4: Check the behavior for \( |x| \geq 1 \) For \( |x| \geq 1 \): \[ f(x) = x |x| = x^2 \quad \text{(since } |x| = x \text{ for } x \geq 1 \text{ and } |x| = -x \text{ for } x \leq -1\text{)} \] Now, we will check \( f(-x) \): \[ f(-x) = -x |x| = -x^2 \quad \text{(for } x \geq 1, -x \leq -1\text{)} \] ### Step 5: Check if \( f(x) \) is odd for \( |x| \geq 1 \) For \( |x| \geq 1 \): \[ f(-x) = -x^2 \quad \text{and} \quad -f(x) = -x^2 \] Thus, for \( |x| \geq 1 \): \[ f(-x) = -f(x) \] ### Conclusion Since \( f(-x) = -f(x) \) holds true for all \( x \), we conclude that \( f(x) \) is an odd function. ### Step 6: Check the derivative To check if \( f'(x) \) is even, we differentiate \( f(x) \) in both cases: 1. For \( |x| < 1 \): \[ f'(x) = 2x \sin\left(\frac{\pi}{2} x\right) + x^2 \frac{\pi}{2} \cos\left(\frac{\pi}{2} x\right) \] 2. For \( |x| \geq 1 \): \[ f'(x) = 2x \] Now checking \( f'(-x) \): - For \( |x| < 1 \): \[ f'(-x) = 2(-x) \sin\left(-\frac{\pi}{2} x\right) + (-x)^2 \frac{\pi}{2} \cos\left(-\frac{\pi}{2} x\right) = -2x \sin\left(\frac{\pi}{2} x\right) + x^2 \frac{\pi}{2} \cos\left(\frac{\pi}{2} x\right) \] - For \( |x| \geq 1 \): \[ f'(-x) = 2(-x) = -2x \] Thus, we find that \( f'(x) \) is even. ### Final Answer - \( f(x) \) is an odd function. - \( f'(x) \) is an even function.
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(x^(2) sin ((pix)/(2)),-1 lt x lt 1, x ne 0),(x|x|, x gt 1 or x le -1):} . Then ,

A function f(x) given by f(x)={{:(x^(2)sin""(pix)/(2), |x| lt1),(x|x|,|x| ge1):}is

Let f(x)={0 for x=0 x^2 sin (pi/x) for -1 1 or x <-1

Let f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):}, then domain of f'(x) is:

if f(x) ={{:( x-1, xlt 0),( x^(2) - 2x , x ge 0):} , then

Let f(x)={{:(,x^(n)sin\ (1)/(x),x ne 0),(,0,x=0):} Then f(x) is continuous but not differentiable at x=0 . If

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

Let f(x)= {:{ (x + a , x ge 1 ) , ( ax^(2) + 1, x lt 1) :} then f(x) is derivable at x =1 , if

Let f (x) = {{:(e ^((1)/(x ^(2)))sin ""(1)/(x), x ne0),(lamda, x =(0):}, then f '(0)

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. The function f(x)=((1)/(2))^(sinx), is

    Text Solution

    |

  2. If [x] and {x} represent the integral and fractional parts of x respe...

    Text Solution

    |

  3. Let f(x)={{:( 0,x=0),(x^(2) sin pi//2x,|x| lt 1),(x|x|, |x| ge 1):}. T...

    Text Solution

    |

  4. Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(...

    Text Solution

    |

  5. The domain of definition of the function f(x)=tan((pi)/([x+2])), is wh...

    Text Solution

    |

  6. The range of the function f(x)=sin [log (sqrt(4-x^(2))/(1-x)) is :

    Text Solution

    |

  7. The range of the function y=(x+2)/(x^2-8x-4)

    Text Solution

    |

  8. The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in ...

    Text Solution

    |

  9. The period of the function f(x)=|sin 3x|+| cos 3x| , is

    Text Solution

    |

  10. The function f(x)={{:( 1, x in Q),(0, x notin Q):}, is

    Text Solution

    |

  11. Which of the following functions has period pi ?

    Text Solution

    |

  12. The function f(x)=x[x] , is

    Text Solution

    |

  13. If f(x) and g(x) are periodic functions with the same fundamental per...

    Text Solution

    |

  14. The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi], where ...

    Text Solution

    |

  15. If f(sinx)-f(-sinx)=x^(2)-1 is defined for all x in R , then the val...

    Text Solution

    |

  16. Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2...

    Text Solution

    |

  17. Let the function f(x)=3x^(2)-4x+8log(1+|x|) be defined on the interval...

    Text Solution

    |

  18. If f:[-4,0]->R is defined by f(x) = e^x + sin x, its even extension to...

    Text Solution

    |

  19. Which one of the following is not periodic ?

    Text Solution

    |

  20. The domain of the function f(x)=(sin^(-1)(3-x))/(log(e)(|-x|-2)), is

    Text Solution

    |