Home
Class 12
MATHS
The domain of definition of the function...

The domain of definition of the function `f(x)=tan((pi)/([x+2]))`, is where [] represents greatest integer function less than or equal to x.

A

`[-2,1]`

B

`(-2,-1)`

C

`R-[-2,-1]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \tan\left(\frac{\pi}{[x+2]}\right) \), where \([x]\) denotes the greatest integer function (also known as the floor function), we need to determine the values of \( x \) for which the function is defined. ### Step-by-Step Solution: 1. **Identify the Conditions for the Tangent Function**: The tangent function is defined for all real numbers except where its argument is an odd multiple of \( \frac{\pi}{2} \). This means we need to ensure that: \[ \frac{\pi}{[x+2]} \neq \frac{\pi}{2} + n\pi \quad \text{for any integer } n \] Simplifying this gives: \[ [x+2] \neq \frac{2}{1 + 2n} \quad \text{for any integer } n \] 2. **Determine the Values of \([x+2]\)**: Since \([x+2]\) is an integer, we need to find integer values that are not equal to \( \pm 2 \) (as derived from the previous step). Thus: \[ [x+2] \neq 2 \quad \text{and} \quad [x+2] \neq -2 \] 3. **Translate Conditions into Inequalities**: - For \([x+2] \neq 2\): \[ x + 2 \neq 2 \implies x \neq 0 \] - For \([x+2] \neq -2\): \[ x + 2 \neq -2 \implies x \neq -4 \] 4. **Consider the Greatest Integer Function**: The greatest integer function \([x+2]\) can take values depending on the range of \( x \): - If \( [x+2] = k \) (where \( k \) is an integer), then: \[ k \leq x + 2 < k + 1 \implies k - 2 \leq x < k - 1 \] - Therefore, we need to exclude intervals where \( [x+2] = 2 \) or \( [x+2] = -2 \). 5. **Identify the Excluded Intervals**: - For \( [x+2] = 2 \): \[ 0 \leq x < 1 \] - For \( [x+2] = -2 \): \[ -4 \leq x < -3 \] 6. **Combine the Conditions**: The domain of \( f(x) \) is all real numbers except the intervals derived from the conditions above: \[ \text{Domain of } f(x) = \mathbb{R} \setminus \left( [-4, -3) \cup [0, 1) \right) \] ### Final Answer: Thus, the domain of the function \( f(x) = \tan\left(\frac{\pi}{[x+2]}\right) \) is: \[ \mathbb{R} \setminus \left( [-4, -3) \cup [0, 1) \right) \]
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is

If f(x)=e^([cotx]) , where [y] represents the greatest integer less than or equal to y then

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

The domain of the function f(x) = sqrt((4-x^(2))/([x]+2)) where [x] denotes the greatest integer less than or equal to x,is

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. Let f(x)={{:( 0,x=0),(x^(2) sin pi//2x,|x| lt 1),(x|x|, |x| ge 1):}. T...

    Text Solution

    |

  2. Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(...

    Text Solution

    |

  3. The domain of definition of the function f(x)=tan((pi)/([x+2])), is wh...

    Text Solution

    |

  4. The range of the function f(x)=sin [log (sqrt(4-x^(2))/(1-x)) is :

    Text Solution

    |

  5. The range of the function y=(x+2)/(x^2-8x-4)

    Text Solution

    |

  6. The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in ...

    Text Solution

    |

  7. The period of the function f(x)=|sin 3x|+| cos 3x| , is

    Text Solution

    |

  8. The function f(x)={{:( 1, x in Q),(0, x notin Q):}, is

    Text Solution

    |

  9. Which of the following functions has period pi ?

    Text Solution

    |

  10. The function f(x)=x[x] , is

    Text Solution

    |

  11. If f(x) and g(x) are periodic functions with the same fundamental per...

    Text Solution

    |

  12. The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi], where ...

    Text Solution

    |

  13. If f(sinx)-f(-sinx)=x^(2)-1 is defined for all x in R , then the val...

    Text Solution

    |

  14. Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2...

    Text Solution

    |

  15. Let the function f(x)=3x^(2)-4x+8log(1+|x|) be defined on the interval...

    Text Solution

    |

  16. If f:[-4,0]->R is defined by f(x) = e^x + sin x, its even extension to...

    Text Solution

    |

  17. Which one of the following is not periodic ?

    Text Solution

    |

  18. The domain of the function f(x)=(sin^(-1)(3-x))/(log(e)(|-x|-2)), is

    Text Solution

    |

  19. The domain of f(x)=log5|log(e)x| , is

    Text Solution

    |

  20. The period of sin^(2) theta , is

    Text Solution

    |