Home
Class 12
MATHS
The range of the function y=(x+2)/(x^2-8...

The range of the function `y=(x+2)/(x^2-8x-4)`

A

`(-oo,-(1)/(4)] cup [-(1)/(20),oo)`

B

`(-oo,-(1)/(4)) cup (-(1)/(20),oo)`

C

`(-oo,-(1)/(4)] cup (-(1)/(20),oo)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( y = \frac{x + 2}{x^2 - 8x - 4} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ y = \frac{x + 2}{x^2 - 8x - 4} \] We can rearrange it to express it in a standard form: \[ y(x^2 - 8x - 4) = x + 2 \] This simplifies to: \[ yx^2 - 8yx - 4y = x + 2 \] Rearranging gives us: \[ yx^2 - (8y + 1)x - (4y + 2) = 0 \] ### Step 2: Identify coefficients From the quadratic equation \( ax^2 + bx + c = 0 \), we identify: - \( a = y \) - \( b = -(8y + 1) \) - \( c = -(4y + 2) \) ### Step 3: Calculate the discriminant For the quadratic equation to have real roots, the discriminant \( D \) must be greater than or equal to zero: \[ D = b^2 - 4ac \] Substituting the values of \( a \), \( b \), and \( c \): \[ D = (-(8y + 1))^2 - 4(y)(-(4y + 2)) \] This simplifies to: \[ D = (8y + 1)^2 + 4y(4y + 2) \] ### Step 4: Expand and simplify the discriminant Expanding the discriminant: \[ D = (8y + 1)^2 + 16y^2 + 8y \] Calculating \( (8y + 1)^2 \): \[ D = 64y^2 + 16y + 1 + 16y^2 + 8y \] Combining like terms: \[ D = 80y^2 + 24y + 1 \] ### Step 5: Set the discriminant greater than or equal to zero To find the range, we need: \[ 80y^2 + 24y + 1 \geq 0 \] ### Step 6: Find the roots of the quadratic Using the quadratic formula \( y = \frac{-b \pm \sqrt{D}}{2a} \): \[ y = \frac{-24 \pm \sqrt{(24)^2 - 4 \cdot 80 \cdot 1}}{2 \cdot 80} \] Calculating the discriminant: \[ D = 576 - 320 = 256 \] Thus: \[ y = \frac{-24 \pm 16}{160} \] Calculating the two roots: 1. \( y_1 = \frac{-8}{160} = -\frac{1}{20} \) 2. \( y_2 = \frac{-40}{160} = -\frac{1}{4} \) ### Step 7: Analyze the intervals The roots are \( y = -\frac{1}{20} \) and \( y = -\frac{1}{4} \). We will test intervals around these points: 1. For \( y < -\frac{1}{4} \) 2. For \( -\frac{1}{4} < y < -\frac{1}{20} \) 3. For \( y > -\frac{1}{20} \) ### Step 8: Determine sign of the quadratic Using test points: - For \( y = -1 \) (in the first interval), \( 80(-1)^2 + 24(-1) + 1 = 80 - 24 + 1 = 57 > 0 \) - For \( y = 0 \) (in the second interval), \( 80(0)^2 + 24(0) + 1 = 1 > 0 \) - For \( y = 1 \) (in the third interval), \( 80(1)^2 + 24(1) + 1 = 105 > 0 \) ### Step 9: Conclusion on the range The quadratic \( 80y^2 + 24y + 1 \) is positive for: - \( y \leq -\frac{1}{4} \) or \( y \geq -\frac{1}{20} \) Thus, the range of the function is: \[ (-\infty, -\frac{1}{4}] \cup [-\frac{1}{20}, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The range of the function y=( x^2/ (1+x^2)) where x in R

Find the range of the function f(x)=x^2-2x-4.

The range of the function y=x^(-2//3) is

The range of the function f(x)=(x^(2)-2)/(x^(2)-3) is

Find the range of the function y = (x^(2) - 1)/(x-1), x != 1 .

Write the domain and range of the function f(x)=(x-2)/(2-x) .

The range of the function f(x)=x^2+1/(x^2+1) is

The range of the function f(x)=x^2+1/(x^2+1) is

Find the domain and range of the function f(x)=(4-x)/(x-4)

The range of the function y=[x^2]-[x]^2 x in [0,2] (where [] denotes the greatest integer function), is

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(...

    Text Solution

    |

  2. The domain of definition of the function f(x)=tan((pi)/([x+2])), is wh...

    Text Solution

    |

  3. The range of the function f(x)=sin [log (sqrt(4-x^(2))/(1-x)) is :

    Text Solution

    |

  4. The range of the function y=(x+2)/(x^2-8x-4)

    Text Solution

    |

  5. The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in ...

    Text Solution

    |

  6. The period of the function f(x)=|sin 3x|+| cos 3x| , is

    Text Solution

    |

  7. The function f(x)={{:( 1, x in Q),(0, x notin Q):}, is

    Text Solution

    |

  8. Which of the following functions has period pi ?

    Text Solution

    |

  9. The function f(x)=x[x] , is

    Text Solution

    |

  10. If f(x) and g(x) are periodic functions with the same fundamental per...

    Text Solution

    |

  11. The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi], where ...

    Text Solution

    |

  12. If f(sinx)-f(-sinx)=x^(2)-1 is defined for all x in R , then the val...

    Text Solution

    |

  13. Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2...

    Text Solution

    |

  14. Let the function f(x)=3x^(2)-4x+8log(1+|x|) be defined on the interval...

    Text Solution

    |

  15. If f:[-4,0]->R is defined by f(x) = e^x + sin x, its even extension to...

    Text Solution

    |

  16. Which one of the following is not periodic ?

    Text Solution

    |

  17. The domain of the function f(x)=(sin^(-1)(3-x))/(log(e)(|-x|-2)), is

    Text Solution

    |

  18. The domain of f(x)=log5|log(e)x| , is

    Text Solution

    |

  19. The period of sin^(2) theta , is

    Text Solution

    |

  20. f(x)=""^(16-x)C(2x-1)+""^(20-3x)P(4x-5)

    Text Solution

    |