Home
Class 12
MATHS
The range of the function f(x)=1+sinx+s...

The range of the function `f(x)=1+sinx+sin^(3)x+sin^(5)x+……` when `x in (-pi//2,pi//2)`, is

A

(0,1)

B

R

C

(-2,2)

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = 1 + \sin x + \sin^3 x + \sin^5 x + \ldots \) for \( x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), we can follow these steps: ### Step 1: Identify the series The function can be expressed as an infinite series: \[ f(x) = 1 + \sin x + \sin^3 x + \sin^5 x + \ldots \] This is a geometric series where the first term \( a = 1 \) and the common ratio \( r = \sin x \). ### Step 2: Find the sum of the series The sum of an infinite geometric series can be calculated using the formula: \[ S = \frac{a}{1 - r} \] provided that \( |r| < 1 \). In our case: \[ f(x) = \frac{1}{1 - \sin x} \quad \text{for } |\sin x| < 1 \] Since \( x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), \( \sin x \) ranges from -1 to 1, but we need to ensure \( |\sin x| < 1 \). ### Step 3: Analyze the limits of \( f(x) \) - As \( x \) approaches \( -\frac{\pi}{2} \), \( \sin x \) approaches -1: \[ f\left(-\frac{\pi}{2}\right) = \frac{1}{1 - (-1)} = \frac{1}{2} \] - As \( x \) approaches \( \frac{\pi}{2} \), \( \sin x \) approaches 1: \[ f\left(\frac{\pi}{2}\right) = \frac{1}{1 - 1} \quad \text{(undefined, approaches infinity)} \] ### Step 4: Determine the range of \( f(x) \) Since \( \sin x \) varies continuously from -1 to 1 as \( x \) varies from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \), \( f(x) \) will take all values from \( \frac{1}{2} \) to \( +\infty \). ### Conclusion Thus, the range of the function \( f(x) \) is: \[ \left(\frac{1}{2}, +\infty\right) \]
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The range of the function f(x) = (1)/(2-sin 3x) is

The range of the function f(x)=3|sin x|-2|cos x| is :

Find the range of the function f(x) =x Si x- (1)/(2) sin^(2) x for xin (0,(pi)/(2))

The period of the function f(x)=sin((2x+3)/(6pi)) , is

Find the range of the function " " f(x)=(sin^(2)x+sinx-1)/(sin^(2)x-sinx+2) .

Find the range of the function f(x)=3 sin (sqrt((pi^(2))/(16)-x^(2))).

f(x) = sinx - sin2x in [0,pi]

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is

Separate the intervals of monotonocity of the function: f(x)=-sin^3x+3sin^2x+5,x in [-pi/2,pi/2]dot

Range of the function : f(x)=log_2((pi+2sin^(- 1)((3-x)/7))/pi)

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(...

    Text Solution

    |

  2. The domain of definition of the function f(x)=tan((pi)/([x+2])), is wh...

    Text Solution

    |

  3. The range of the function f(x)=sin [log (sqrt(4-x^(2))/(1-x)) is :

    Text Solution

    |

  4. The range of the function y=(x+2)/(x^2-8x-4)

    Text Solution

    |

  5. The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in ...

    Text Solution

    |

  6. The period of the function f(x)=|sin 3x|+| cos 3x| , is

    Text Solution

    |

  7. The function f(x)={{:( 1, x in Q),(0, x notin Q):}, is

    Text Solution

    |

  8. Which of the following functions has period pi ?

    Text Solution

    |

  9. The function f(x)=x[x] , is

    Text Solution

    |

  10. If f(x) and g(x) are periodic functions with the same fundamental per...

    Text Solution

    |

  11. The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi], where ...

    Text Solution

    |

  12. If f(sinx)-f(-sinx)=x^(2)-1 is defined for all x in R , then the val...

    Text Solution

    |

  13. Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2...

    Text Solution

    |

  14. Let the function f(x)=3x^(2)-4x+8log(1+|x|) be defined on the interval...

    Text Solution

    |

  15. If f:[-4,0]->R is defined by f(x) = e^x + sin x, its even extension to...

    Text Solution

    |

  16. Which one of the following is not periodic ?

    Text Solution

    |

  17. The domain of the function f(x)=(sin^(-1)(3-x))/(log(e)(|-x|-2)), is

    Text Solution

    |

  18. The domain of f(x)=log5|log(e)x| , is

    Text Solution

    |

  19. The period of sin^(2) theta , is

    Text Solution

    |

  20. f(x)=""^(16-x)C(2x-1)+""^(20-3x)P(4x-5)

    Text Solution

    |