Home
Class 12
MATHS
The range of the function f(x)=cosec^(-1...

The range of the function `f(x)=cosec^(-1)[sinx] " in " [0,2pi]`, where `[*]` denotes the greatest integer function , is

A

`[0,pi//2) cup (pi,3pi//2]`

B

{-pi/2} and {pi/2}

C

`(0,pi] cup {3pi//2}`

D

`(pi//2,pi) cup (3pi//2,2pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \csc^{-1}[\sin x] \) for \( x \in [0, 2\pi] \), where \([\cdot]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Determine the range of \(\sin x\) in the interval \([0, 2\pi]\) The sine function oscillates between -1 and 1. Therefore, for \( x \in [0, 2\pi] \): \[ \sin x \in [-1, 1] \] ### Step 2: Apply the greatest integer function The greatest integer function \([\sin x]\) takes the value of \(\sin x\) and rounds it down to the nearest integer. Thus, we need to find the integer values that \(\sin x\) can take in the interval \([-1, 1]\). - When \( \sin x = 1 \): \([\sin x] = 1\) - When \( \sin x \) is in the interval \((0, 1)\): \([\sin x] = 0\) - When \( \sin x = 0 \): \([\sin x] = 0\) - When \( \sin x \) is in the interval \((-1, 0)\): \([\sin x] = -1\) - When \( \sin x = -1 \): \([\sin x] = -1\) Thus, the possible values of \([\sin x]\) are \(-1, 0, 1\). ### Step 3: Evaluate \(f(x) = \csc^{-1}([\sin x])\) Now we evaluate \(f(x)\) for each of the possible values of \([\sin x]\): 1. **If \([\sin x] = 1\)**: \[ f(x) = \csc^{-1}(1) = 0 \] 2. **If \([\sin x] = 0\)**: \[ f(x) = \csc^{-1}(0) \text{ is undefined (since \(\csc^{-1}(y)\) is defined for } |y| \geq 1\text{)} \] 3. **If \([\sin x] = -1\)**: \[ f(x) = \csc^{-1}(-1) = -\frac{\pi}{2} \] ### Step 4: Compile the range of \(f(x)\) From the evaluations above, the function \(f(x)\) can take the values: - \(0\) (when \([\sin x] = 1\)) - \(-\frac{\pi}{2}\) (when \([\sin x] = -1\)) Thus, the range of the function \(f(x)\) is: \[ \text{Range of } f(x) = \{-\frac{\pi}{2}, 0\} \] ### Final Answer The range of the function \( f(x) = \csc^{-1}[\sin x] \) for \( x \in [0, 2\pi] \) is \(\{-\frac{\pi}{2}, 0\}\). ---
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

f(x)=[sinx] where [.] denotest the greatest integer function is continuous at:

Range of f(x) =[1+sinx]+[cosx-1]+[tan^(- 1)x] AA x in [0,2pi] where [] denotes the greatest integer function is

The range of the function y=[x^2]-[x]^2 x in [0,2] (where [] denotes the greatest integer function), is

The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [ . ] denotes the greatest integer function.

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

Draw the graph of [y] = sin x, x in [0,2pi] where [*] denotes the greatest integer function

Number of solutions of the equation cos[x]=e^(2x-1),x in [0,2pi] , where[.] denotes the greatest integer function is

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

Draw the graphs of the following function abs(f(x))=2+sinx x in[0,2pi] [.] denotes the greatest integer function.

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(...

    Text Solution

    |

  2. The domain of definition of the function f(x)=tan((pi)/([x+2])), is wh...

    Text Solution

    |

  3. The range of the function f(x)=sin [log (sqrt(4-x^(2))/(1-x)) is :

    Text Solution

    |

  4. The range of the function y=(x+2)/(x^2-8x-4)

    Text Solution

    |

  5. The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in ...

    Text Solution

    |

  6. The period of the function f(x)=|sin 3x|+| cos 3x| , is

    Text Solution

    |

  7. The function f(x)={{:( 1, x in Q),(0, x notin Q):}, is

    Text Solution

    |

  8. Which of the following functions has period pi ?

    Text Solution

    |

  9. The function f(x)=x[x] , is

    Text Solution

    |

  10. If f(x) and g(x) are periodic functions with the same fundamental per...

    Text Solution

    |

  11. The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi], where ...

    Text Solution

    |

  12. If f(sinx)-f(-sinx)=x^(2)-1 is defined for all x in R , then the val...

    Text Solution

    |

  13. Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2...

    Text Solution

    |

  14. Let the function f(x)=3x^(2)-4x+8log(1+|x|) be defined on the interval...

    Text Solution

    |

  15. If f:[-4,0]->R is defined by f(x) = e^x + sin x, its even extension to...

    Text Solution

    |

  16. Which one of the following is not periodic ?

    Text Solution

    |

  17. The domain of the function f(x)=(sin^(-1)(3-x))/(log(e)(|-x|-2)), is

    Text Solution

    |

  18. The domain of f(x)=log5|log(e)x| , is

    Text Solution

    |

  19. The period of sin^(2) theta , is

    Text Solution

    |

  20. f(x)=""^(16-x)C(2x-1)+""^(20-3x)P(4x-5)

    Text Solution

    |