Home
Class 12
MATHS
Let f:[pi,3pi//2] to R be a function gi...

Let `f:[pi,3pi//2] to R ` be a function given by `f(x)=[sinx]+[1+sinx]+[2+ sinx]`
Then , the range of f(x) is

A

`{0,3}`

B

`{1}`

C

`{0,2}`

D

`{3}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = [\sin x] + [1 + \sin x] + [2 + \sin x] \) where \( f: [\pi, \frac{3\pi}{2}] \to \mathbb{R} \), we will analyze the behavior of \( \sin x \) within the given interval. ### Step-by-Step Solution: 1. **Determine the range of \( \sin x \) on the interval \([\pi, \frac{3\pi}{2}]\)**: - At \( x = \pi \), \( \sin(\pi) = 0 \). - At \( x = \frac{3\pi}{2} \), \( \sin\left(\frac{3\pi}{2}\right) = -1 \). - Therefore, as \( x \) varies from \( \pi \) to \( \frac{3\pi}{2} \), \( \sin x \) decreases from \( 0 \) to \( -1 \). 2. **Evaluate \( [\sin x] \)**: - The greatest integer function \( [\sin x] \) will take values: - \( [\sin x] = 0 \) when \( \sin x = 0 \) (at \( x = \pi \)). - \( [\sin x] = -1 \) when \( -1 < \sin x < 0 \) (for \( x \) in \( (\pi, \frac{3\pi}{2}) \)). - Thus, \( [\sin x] \) can be \( 0 \) or \( -1 \). 3. **Evaluate \( [1 + \sin x] \)**: - Since \( \sin x \) ranges from \( 0 \) to \( -1 \), \( 1 + \sin x \) ranges from \( 1 \) to \( 0 \). - Therefore: - \( [1 + \sin x] = 1 \) when \( \sin x = 0 \) (at \( x = \pi \)). - \( [1 + \sin x] = 0 \) when \( \sin x \) is in \( (-1, 0) \) (for \( x \) in \( (\pi, \frac{3\pi}{2}) \)). 4. **Evaluate \( [2 + \sin x] \)**: - The term \( 2 + \sin x \) will range from \( 2 \) to \( 1 \). - Therefore: - \( [2 + \sin x] = 2 \) when \( \sin x = 0 \) (at \( x = \pi \)). - \( [2 + \sin x] = 1 \) when \( \sin x \) is in \( (-1, 0) \) (for \( x \) in \( (\pi, \frac{3\pi}{2}) \)). 5. **Combine the values to find \( f(x) \)**: - At \( x = \pi \): \[ f(\pi) = [0] + [1] + [2] = 0 + 1 + 2 = 3 \] - For \( x \) in \( (\pi, \frac{3\pi}{2}) \): \[ f(x) = [-1] + [0] + [1] = -1 + 0 + 1 = 0 \] 6. **Conclusion**: - The function \( f(x) \) takes the values \( 3 \) at \( x = \pi \) and \( 0 \) for \( x \) in \( (\pi, \frac{3\pi}{2}) \). - Therefore, the range of \( f(x) \) is \( \{0, 3\} \). ### Final Answer: The range of \( f(x) \) is \( \{0, 3\} \).
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

f(x) = sinx - sin2x in [0,pi]

Find the range of f(x) =sin^2x-3sinx+2 .

The function f(x)=((1)/(2))^(sinx) , is

Find the range of f(x)=sin^2x-3sinx+2

Let a function f:R to R be defined by f(x)=2x+cosx+sinx " for " x in R . Then find the nature of f(x) .

Prove that period of function f(x)=sinx, x in R " is " 2pi.

Let f:[-pi/2,\ pi/2]->A be defined by f(x)=sinx . If f is a bijection, write set A .

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is

Find the domain and range of the function f(x)=[sinx]

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Chapter Test
  1. Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(...

    Text Solution

    |

  2. The domain of definition of the function f(x)=tan((pi)/([x+2])), is wh...

    Text Solution

    |

  3. The range of the function f(x)=sin [log (sqrt(4-x^(2))/(1-x)) is :

    Text Solution

    |

  4. The range of the function y=(x+2)/(x^2-8x-4)

    Text Solution

    |

  5. The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in ...

    Text Solution

    |

  6. The period of the function f(x)=|sin 3x|+| cos 3x| , is

    Text Solution

    |

  7. The function f(x)={{:( 1, x in Q),(0, x notin Q):}, is

    Text Solution

    |

  8. Which of the following functions has period pi ?

    Text Solution

    |

  9. The function f(x)=x[x] , is

    Text Solution

    |

  10. If f(x) and g(x) are periodic functions with the same fundamental per...

    Text Solution

    |

  11. The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi], where ...

    Text Solution

    |

  12. If f(sinx)-f(-sinx)=x^(2)-1 is defined for all x in R , then the val...

    Text Solution

    |

  13. Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2...

    Text Solution

    |

  14. Let the function f(x)=3x^(2)-4x+8log(1+|x|) be defined on the interval...

    Text Solution

    |

  15. If f:[-4,0]->R is defined by f(x) = e^x + sin x, its even extension to...

    Text Solution

    |

  16. Which one of the following is not periodic ?

    Text Solution

    |

  17. The domain of the function f(x)=(sin^(-1)(3-x))/(log(e)(|-x|-2)), is

    Text Solution

    |

  18. The domain of f(x)=log5|log(e)x| , is

    Text Solution

    |

  19. The period of sin^(2) theta , is

    Text Solution

    |

  20. f(x)=""^(16-x)C(2x-1)+""^(20-3x)P(4x-5)

    Text Solution

    |