Home
Class 12
MATHS
If alpha+beta+gamma =2 and veca=alphahat...

If `alpha+beta+gamma =2 and veca=alphahati+betahatj+gammahatk, hatkxx (hatkxxveca)=vec0` then gamma= (A) 1 (B) -1 (C) 2 (D) none of these

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given information and equations. ### Step 1: Understand the given equations We are given that: 1. \( \alpha + \beta + \gamma = 2 \) 2. The vector \( \vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} \) 3. The equation \( \hat{k} \times (\hat{k} \times \vec{a}) = \vec{0} \) ### Step 2: Evaluate the cross product Using the vector triple product identity, we can simplify \( \hat{k} \times (\hat{k} \times \vec{a}) \): \[ \hat{k} \times (\hat{k} \times \vec{a}) = (\hat{k} \cdot \vec{a}) \hat{k} - (\hat{k} \cdot \hat{k}) \vec{a} \] Since \( \hat{k} \cdot \hat{k} = 1 \), we can rewrite it as: \[ \hat{k} \times (\hat{k} \times \vec{a}) = (\hat{k} \cdot \vec{a}) \hat{k} - \vec{a} \] ### Step 3: Calculate \( \hat{k} \cdot \vec{a} \) The dot product \( \hat{k} \cdot \vec{a} \) is simply the k-component of \( \vec{a} \), which is \( \gamma \): \[ \hat{k} \cdot \vec{a} = \gamma \] Thus, we can substitute this back into our equation: \[ \hat{k} \times (\hat{k} \times \vec{a}) = \gamma \hat{k} - \vec{a} \] ### Step 4: Set the equation to zero Since we know that \( \hat{k} \times (\hat{k} \times \vec{a}) = \vec{0} \), we can set the equation: \[ \gamma \hat{k} - \vec{a} = \vec{0} \] This implies: \[ \gamma \hat{k} = \vec{a} \] ### Step 5: Substitute \( \vec{a} \) Substituting \( \vec{a} \) into the equation gives us: \[ \gamma \hat{k} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} \] ### Step 6: Equate components From the equation \( \gamma \hat{k} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} \), we can equate the components: - The i-component: \( \alpha = 0 \) - The j-component: \( \beta = 0 \) - The k-component: \( \gamma = \gamma \) ### Step 7: Substitute back into the first equation Now, substituting \( \alpha = 0 \) and \( \beta = 0 \) into the equation \( \alpha + \beta + \gamma = 2 \): \[ 0 + 0 + \gamma = 2 \] This simplifies to: \[ \gamma = 2 \] ### Conclusion Thus, the value of \( \gamma \) is \( 2 \), which corresponds to option (C).

To solve the problem step by step, we start with the given information and equations. ### Step 1: Understand the given equations We are given that: 1. \( \alpha + \beta + \gamma = 2 \) 2. The vector \( \vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} \) 3. The equation \( \hat{k} \times (\hat{k} \times \vec{a}) = \vec{0} \) ...
Promotional Banner

Topper's Solved these Questions

  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|16 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|33 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • MISCELLANEOUS EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos

Similar Questions

Explore conceptually related problems

If a line makes angles alpha, beta, gamma with the axes then cos2alpha +cos2beta+cos2gamma = (A) -2 (B) -1 (C) 1 (D) 2

The value of expression of (alphatangamma+betacotgamma)(alphacotgamma+betatangamma)-4alphabetacot^2 2gamma depends on alpha (b) beta (c) gamma (d) none of these

If tan gamma=sec alpha sec beta+tan alpha tan beta, then cos2 gamma is necessarily (A) ge0 (B) le0 (C) lt0 (D) gt0

If veca,vecb,vecc are mutually perpendicular vector and veca=alpha(vecaxxvecb)+beta(vecbxxvecc)+gamma(veccxxveca) and [veca vecb vecc]=1 then vecalpha+vecbeta+vecgamma= (A) |veca|^2 (B) -|veca|^2 (C) 0 (D) none of these

The equation of plane parallel to the plane x+y+z=0 and passing through (alpha, beta, gamma0 is (A) x+y+z=alpha+beta+gamma (B) x+y+z=alphabeta+betagamma+gammaalpha (C) x+y+z+alpha+beta+gamma=0 (D) none of these

A point (alpha, beta, gamma) satisfies the equation of the plane 3x+4y+7z=3. The value of beta , such that vecp=alphahati+betahatj+gammahatk satisfies the relation hatjxx(hatjxxvecp)=vec0 , is equal to

If (tan(alpha+beta-gamma))/("tan"(alpha-beta+gamma))=(tangamma)/(tanbeta),(beta!=gamma) then sin2alpha+sin2beta+sin2gamma= (a) 0 (b) 1 (c) 2 (d) 1/2

If alpha, beta. gamma are the roots of x^3 + px^2 + q = 0, where q=0, ther Delta=[(1/alpha,1/beta,1/gamma),(1/beta,1/gamma,1/alpha),(1/gamma,1/alpha,1/beta)] equals (A) alpha beta gamma (B) alpha +beta + gamma (C) 0 (D) none of these

If alpha , beta , gamma are roots of the equation x^3 + ax^2 + bx +c=0 then alpha^(-1) + beta^(-1) + gamma^(-1) =

If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

OBJECTIVE RD SHARMA ENGLISH-PLANE AND STRAIGHT LINE IN SPACE -Section I - Solved Mcqs
  1. A plane which is perpendicular to two planes 2x-2y+z=0 and x-y+2z = 4 ...

    Text Solution

    |

  2. Let vecA be a vector parallel to the line of intersection of planes P(...

    Text Solution

    |

  3. If alpha+beta+gamma =2 and veca=alphahati+betahatj+gammahatk, hatkxx (...

    Text Solution

    |

  4. A variable plane x/a+y/b+z/c=1 at a unit distance from origin cuts the...

    Text Solution

    |

  5. If the distance of the point P(1,-2,1) from the plane x+2y-2z=alpha,...

    Text Solution

    |

  6. Equation of the plane containing the straight line (x)/(2)= (y)/(3)= (...

    Text Solution

    |

  7. If the distance between the plane Ax 2y + z = d and the plane contain...

    Text Solution

    |

  8. A line from the origin meets the lines (x-2)/1=(y-1)/-2=(z+1)/1 and (x...

    Text Solution

    |

  9. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  10. If the angle between the line x=(y-1)/(2)=(z-3)(lambda) and the plane ...

    Text Solution

    |

  11. Let a,b and c be three real numbers satisfying [a b c ] |(1,9,7),(...

    Text Solution

    |

  12. The distance of the point (1, -5, 9) from the plane x-y+z=5 measured a...

    Text Solution

    |

  13. Find the perpendicular distance of the point (3, -1, 11) from the line...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If the straight lines (x-1)/(2)=(y+1)/(k)=(z)/(2) and (x+1)/(5)=(y+1)/...

    Text Solution

    |

  16. If the three planes x=5,2x-5ay+3z-2=0 and 3bx+y-3z=0 contain a common ...

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. Consider the set of eight vectors V[ahati+bhatj+chatk:a,b,c in {1-1}]....

    Text Solution

    |

  20. The image of the line (x-1)/(3)=(y-3)/(1)=(z-4)/(-5) in the plane 2x-y...

    Text Solution

    |