Home
Class 12
MATHS
Statement 1: If a is an integer the the ...

Statement 1: If `a` is an integer the the straight lines
`vecr=hati+2hati+3hatk+lamda(ahati+2hatj+3hatk)`
and `vecr=2hati+3hatj+hatk+mu(3hati+hatj+2hatk)` intersect at a point for `a=-5`.
Statement 2: Two straight lines intersect if the shortest distance between them is zero.

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the two given lines intersect at a point for \( a = -5 \), we can follow these steps: ### Step 1: Identify the lines The two lines are given in vector form: 1. Line 1: \[ \vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda(a\hat{i} + 2\hat{j} + 3\hat{k}) \] Here, the point \( \vec{a_1} = \hat{i} + 2\hat{j} + 3\hat{k} \) and the direction vector \( \vec{b_1} = a\hat{i} + 2\hat{j} + 3\hat{k} \). 2. Line 2: \[ \vec{r} = 2\hat{i} + 3\hat{j} + \hat{k} + \mu(3\hat{i} + a\hat{j} + 2\hat{k}) \] Here, the point \( \vec{a_2} = 2\hat{i} + 3\hat{j} + \hat{k} \) and the direction vector \( \vec{b_2} = 3\hat{i} + a\hat{j} + 2\hat{k} \). ### Step 2: Find the vector connecting the points Calculate \( \vec{a_2} - \vec{a_1} \): \[ \vec{a_2} - \vec{a_1} = (2\hat{i} + 3\hat{j} + \hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) = (2-1)\hat{i} + (3-2)\hat{j} + (1-3)\hat{k} = \hat{i} + \hat{j} - 2\hat{k} \] ### Step 3: Calculate the cross product of the direction vectors Now, calculate \( \vec{b_1} \times \vec{b_2} \): \[ \vec{b_1} = a\hat{i} + 2\hat{j} + 3\hat{k}, \quad \vec{b_2} = 3\hat{i} + a\hat{j} + 2\hat{k} \] Using the determinant to find the cross product: \[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & 2 & 3 \\ 3 & a & 2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(2 \cdot 2 - 3 \cdot a) - \hat{j}(a \cdot 2 - 3 \cdot 3) + \hat{k}(a \cdot a - 2 \cdot 3) \] \[ = \hat{i}(4 - 3a) - \hat{j}(2a - 9) + \hat{k}(a^2 - 6) \] ### Step 4: Find the shortest distance condition The shortest distance between two lines is zero if: \[ |\vec{a_2} - \vec{a_1}| \cdot (\vec{b_1} \times \vec{b_2}) = 0 \] This means we need to set the dot product of \( \vec{a_2} - \vec{a_1} \) and \( \vec{b_1} \times \vec{b_2} \) to zero: \[ (\hat{i} + \hat{j} - 2\hat{k}) \cdot ((4 - 3a)\hat{i} - (2a - 9)\hat{j} + (a^2 - 6)\hat{k}) = 0 \] Calculating the dot product: \[ 1(4 - 3a) + 1(-2a + 9) - 2(a^2 - 6) = 0 \] \[ 4 - 3a - 2a + 9 - 2a^2 + 12 = 0 \] \[ 25 - 5a - 2a^2 = 0 \quad \Rightarrow \quad 2a^2 + 5a - 25 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula: \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot (-25)}}{2 \cdot 2} \] \[ = \frac{-5 \pm \sqrt{25 + 200}}{4} = \frac{-5 \pm 15}{4} \] This gives: \[ a = \frac{10}{4} = 2.5 \quad \text{or} \quad a = \frac{-20}{4} = -5 \] ### Conclusion Thus, the lines intersect at \( a = -5 \) and \( a = 2.5 \). Therefore, Statement 1 is true, and Statement 2 is also true as it correctly describes the condition for intersection.

To determine whether the two given lines intersect at a point for \( a = -5 \), we can follow these steps: ### Step 1: Identify the lines The two lines are given in vector form: 1. Line 1: \[ \vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda(a\hat{i} + 2\hat{j} + 3\hat{k}) \] ...
Promotional Banner

Topper's Solved these Questions

  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|33 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|89 Videos
  • MISCELLANEOUS EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance vecr=hati+2hatj+3hatk+lambda(hati-3hatj+2hatk)and vecr= 4hati+5hatj+6hatk+mu(2hati+3hatj+hatk) .

Find the shortest distance between the lines vecr=3hati+5hatj+7hatk+lamda(hati-2hatj+hatk) and vecr=-hati+hatj-hatk+mu(2hati-6hatj+hatk)

Find the shortest distance between the lines vecr=(hati+2hatj+hatk)+lamda(2hati+hatj+2hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk) .

Find the shortest distance between the lines vecr=(hatii+2hatj+hatk)+lamda(2hati+hatj=2hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk) .

Find the angle between the lines vecr=3hati-2hatj+6hatk+lamda(2hati+hatj+2hatk) and vecr=(2hatj-5hatk)+mu(6hati+3hatj+2hatk) .

Find the angle between the lines vecr=3hati-2hatj+6hatk+lamda(2hati+hatj+2hatk) and vecr=(2hatj-5hatk)+mu(6hati+3hatj+2hatk) .

Find the angle between the lines vecr = (hati+hatj)+lambda(3hati+2hatj+6hatk) and vecr = (hati-hatk) + mu(hati+2hatj+2hatk)

Find the shrotest distance between the lines vecr = hati+hatj+ lambda(2hati-hatj+hatk) and vecr= 2hati+hatj-hatk+mu(2hati-hatj+hatk) .

Find the angle between the line: vecr=4hati-hatj+lamda(hati+2hatj-2hatk) and vevr=hati-hatj+2hatk-mu(2hati+4hatj-4hatk)

Find the shortest distance between lines vecr = 6hati+2hatj+2hatk+lambda(hati-2hatj+2hatk) and vecr = -4hati-hatk +mu(3hati-2hatj-2hatk) .

OBJECTIVE RD SHARMA ENGLISH-PLANE AND STRAIGHT LINE IN SPACE -Section II - Assertion Reason Type
  1. Consider the planes 3x-6y-2z=15 and 2x+y-2z=5. Statement 1:The parame...

    Text Solution

    |

  2. Consider three planes P(1):x-y+z=1, P(2):x+y-z=-1 and P(3):x-3y+3z=2...

    Text Solution

    |

  3. Statement 1: Let A,B,C be the image of point P(a,b,c) in YZ,ZX andXY p...

    Text Solution

    |

  4. Consider the plane pi:x+y-2z=3 and two points P(2,1,6) and Q(6,5,-2). ...

    Text Solution

    |

  5. Statement 1: Lthe cartesian equation of the plane vecr=(hati-hatj)+lam...

    Text Solution

    |

  6. Statement 1: If the vectors veca and vecc are non collinear, then the ...

    Text Solution

    |

  7. Statement 1: If a is an integer the the straight lines vecr=hati+2ha...

    Text Solution

    |

  8. Statement-I The lines (x-1)/(1)=(y)/(-1)=(z+1)/(1) and (x-2)/(1)=(y+1)...

    Text Solution

    |

  9. Statement 1: A point on the line (x+2)/3=(y+1)/2=(z-3)/2 at a distance...

    Text Solution

    |

  10. Consider the line L:vecr(hati+3hatj-hatk)+lamda(hatj+2hatk) and the pl...

    Text Solution

    |

  11. Statement 1: The plane 5x+2z-8=0 contains the line 2x-y+z-3=0 and 3x+y...

    Text Solution

    |

  12. Statement-I The point A(3, 1, 6) is the mirror image of the point B(1,...

    Text Solution

    |

  13. Statement-I The point A(1, 0, 7) is the mirror image of the point B(1,...

    Text Solution

    |

  14. The equations of two straight lines are (x-1)/2=(y+3)/1=(z-2)/(-3) a...

    Text Solution

    |

  15. Given two straight lines whose equations are (x-3)/1=(y-5)/(-2)=(z-7...

    Text Solution

    |

  16. Statement 1: The shortest distance between the lines x/2=y/(-1)=z/2 an...

    Text Solution

    |