Home
Class 12
MATHS
A straight line vecr=veca+lambda vecb me...

A straight line `vecr=veca+lambda vecb` meets the plane `vecr. vec n=0 at p.` Then position vector of P is

A

`veca+(veca.vecn)/(vecb.vecn)vecb`

B

`veca(vecb.vecn)/(veca.vecn)vecb`

C

`veca-(veca.vecn)/(vecb.vecn)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the position vector of the point \( P \) where the line intersects the plane. The line is given by the equation: \[ \vec{r} = \vec{a} + \lambda \vec{b} \] and the plane is defined by the equation: \[ \vec{r} \cdot \vec{n} = 0 \] ### Step 1: Substitute the line equation into the plane equation Since the point \( P \) lies on both the line and the plane, we can substitute the equation of the line into the equation of the plane: \[ (\vec{a} + \lambda \vec{b}) \cdot \vec{n} = 0 \] ### Step 2: Expand the dot product Expanding the dot product gives: \[ \vec{a} \cdot \vec{n} + \lambda (\vec{b} \cdot \vec{n}) = 0 \] ### Step 3: Solve for \( \lambda \) Rearranging the equation to solve for \( \lambda \): \[ \lambda (\vec{b} \cdot \vec{n}) = -\vec{a} \cdot \vec{n} \] Thus, we can express \( \lambda \) as: \[ \lambda = -\frac{\vec{a} \cdot \vec{n}}{\vec{b} \cdot \vec{n}} \] ### Step 4: Substitute \( \lambda \) back into the line equation Now that we have \( \lambda \), we can substitute it back into the line equation to find the position vector of point \( P \): \[ \vec{r} = \vec{a} + \lambda \vec{b} = \vec{a} - \frac{\vec{a} \cdot \vec{n}}{\vec{b} \cdot \vec{n}} \vec{b} \] ### Step 5: Final expression for the position vector of \( P \) Thus, the position vector of point \( P \) where the line meets the plane is: \[ \vec{r} = \vec{a} - \frac{\vec{a} \cdot \vec{n}}{\vec{b} \cdot \vec{n}} \vec{b} \] ### Conclusion The final position vector of \( P \) is: \[ \vec{P} = \vec{a} - \frac{\vec{a} \cdot \vec{n}}{\vec{b} \cdot \vec{n}} \vec{b} \] ---

To solve the problem step by step, we need to find the position vector of the point \( P \) where the line intersects the plane. The line is given by the equation: \[ \vec{r} = \vec{a} + \lambda \vec{b} \] and the plane is defined by the equation: ...
Promotional Banner

Topper's Solved these Questions

  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|16 Videos
  • MISCELLANEOUS EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos

Similar Questions

Explore conceptually related problems

A straighat line vecr=veca+lamdavecb meets the plane vecr.vecn=p in the point whose position vector is (A) veca+((veca.hatn)/(vecb.hatn))vecb (B) veca+((p-veca.hatn)/(vecb.hatn))vecb (C) veca-((veca.hatn)/(vecb.hatn))vecb (D) none of these

The line vecr= veca + lambda vecb will not meet the plane vecr cdot n =q, if

The line vecr= veca + lambda vecb will not meet the plane vecr cdot vecn =q, if a. vecb.vecn=0,veca.vecn=q b. vecb.vecn" "ne0,veca.vecn" "ne q c. vecb.vecn=0,veca.vecn" "ne q d. vecb.vecn" "ne0,veca.vecn" "ne q

Write the position vector of the point where the line vec r= vec a+lambda vec b meets the plane vec r dot (vec n)=0.

The plane contaning the two straight lines vecr=veca+lamda vecb and vecr=vecb+muveca is (A) [vecr veca vecb]=0 (B) [vecr veca veca xxvecb]=0 (C) [vecr vecb vecaxxvecb]=0 (D) [vecr veca+vecb vecaxxvecb]=0

The equation of the line throgh the point veca parallel to the plane vecr.vecn =q and perpendicular to the line vecr=vecb+tvecc is (A) vecr=veca+lamda (vecnxxvecc) (B) (vecr-veca)xx(vecnxxvecc)=0 (C) vecr=vecb+lamda(vecnxxvecc) (D) none of these

Let A be the given point whose position vector relative to an origin O be veca and vec(ON)=vecn. let vecr be the position vector of any point P which lies on the plane passing through A and perpendicular to ON.Then for any point P on the plane, vec(AP).vecn=0 or, (vecr-veca).vecn=0 or vecr.vecn=veca.vecn or , vecr.hatn=p where p ils the perpendicular distance of the plane from origin. The equation fo the plane which ponts contains the line vecr=2hati+t(hatj-hatk0 where it is scalar and perpendicular to the plane vecr.(hati-hatk)=3 is (A) vecr.(hati-hatj-hatk)=2 (B) vecr.(hati+hatj-hatk)=2 (C) vecr.(hati+hatj+hatk)=2 (D) vecr.(2hati+hatj-hatk)=4

The angle theta the line vecr=vecr+lamdavecb and the plane vecr.hatn=d is given by (A) sin^-1((vecb.hatn)/(|vecn||vecb|)) (B) cos^-1((vecb.hatn)/(|vecb|)) (C) sin^-1((veca.hatn)/(|veca|)) (D) cos^-1((veca.hatn)/(|veca|))

Let A bet eh given point whose position vector relative to an origin O be veca and vec(ON)=vecn. let vecr be the position vector of any point P which lies on the plane passing through A and perpendicular to ON.Then for any point P on the plane, vec(AP).vecn=0 or, (vecr-veca).vecn=0 or vecr.vecn=veca.vecn or , vecr.hatn=p where p ils the perpendicular distance of the plane from origin. The equation of the plane through the point hati+2hatj-hatk and perpendicular to the line of intersection of the planes vecr.(3hati-hatj+hatk)=1 and vecr.(-hati-4hatj+2hatk)=2 is (A) vecr.(2hati+7hatj-13hatk)=29 (B) vecr.(2hati-7hatj-13hatk)=1 (C) vecr.(2hati-7hatj-13hatk)+25=0 (D) vecr.(2hati+7hatj+13hatk)=3

Find the equation a plane containing the line vecr =t veca and perpendicular to the plane containing the line vecr = u vecb and vecr = v vec c.

OBJECTIVE RD SHARMA ENGLISH-PLANE AND STRAIGHT LINE IN SPACE -Exercise
  1. Find the vector equation of the plane in which the lines vecr=hati+ha...

    Text Solution

    |

  2. The Cartesian equation of the plane vecr=(1+lamda-mu)hati+(2-lamda)hat...

    Text Solution

    |

  3. The perpendicular distance between the line vecr = 2hati-2hatj+3hatk+l...

    Text Solution

    |

  4. The vector equation of the line of intersection of the planes vecr.(2h...

    Text Solution

    |

  5. A straight line vecr=veca+lambda vecb meets the plane vecr. vec n=0 at...

    Text Solution

    |

  6. The equation of the plane passing through three non - collinear points...

    Text Solution

    |

  7. The length of the perpendicular from the origin to the plane passing t...

    Text Solution

    |

  8. The equation of the plane containing the line (x-x1)/l=(y-y1)/m=(z-...

    Text Solution

    |

  9. Find the shortest distance between the following pairs of lines whose ...

    Text Solution

    |

  10. If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/2and (x-1)/(3k)=(y-1)/1=(z-6...

    Text Solution

    |

  11. The direction ratios of a normal to the plane passing throuhg (0,0,1)...

    Text Solution

    |

  12. A variable plane is at a distance, k from the origin and meets the coo...

    Text Solution

    |

  13. Find the equation of the plane perpendicular to the line (x-1)/2=(y...

    Text Solution

    |

  14. Find the equation of the plane through the points (2,2,1) and (9,3,6) ...

    Text Solution

    |

  15. The equation of the plane containing the two lines (x-1)/2=(y+1)/(-1...

    Text Solution

    |

  16. The direction ratios of the normal to the plane passing through the po...

    Text Solution

    |

  17. The equation of a plane through the point (2, 3, 1) and (4, -5, 3) a...

    Text Solution

    |

  18. The angle between the lines (x+4)/(1) = (y-3)/(2) = (z+2)/(3) and (x)/...

    Text Solution

    |

  19. The equation of the plane which is perpendicular bisector of the line ...

    Text Solution

    |

  20. If the position vectors of the point A and B are 3hat(i)+hat(j)+2hat(k...

    Text Solution

    |