Home
Class 12
MATHS
The two lines vecr=veca+veclamda(vecbxxv...

The two lines `vecr=veca+veclamda(vecbxxvecc) and vecr=vecb+mu(veccxxveca)` intersect at a point where `veclamda and mu` are scalars then (A) `veca,vecb,vecc` are non coplanar (B) `|veca|=|vecb|=|vecc|` (C) `veca.vecc=vecb.vecc` (D) `lamda(vecbxvecc)+mu(veccxveca)=vecc`

A

`vecaxxvecc=vecbxxvecc`

B

`veca.vecc=vecb.vecc`

C

`vecbxxveca=veccxxveca`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equations of the two lines given: 1. \(\vec{r} = \vec{a} + \lambda (\vec{b} \times \vec{c})\) 2. \(\vec{r} = \vec{b} + \mu (\vec{c} \times \vec{a})\) Since the two lines intersect, we can set these two equations equal to each other: \[ \vec{a} + \lambda (\vec{b} \times \vec{c}) = \vec{b} + \mu (\vec{c} \times \vec{a}) \] ### Step 1: Rearranging the Equation Rearranging the equation gives us: \[ \vec{a} - \vec{b} = \mu (\vec{c} \times \vec{a}) - \lambda (\vec{b} \times \vec{c}) \] ### Step 2: Define Cross Products Let \(\vec{p} = \vec{b} \times \vec{c}\) and \(\vec{q} = \vec{c} \times \vec{a}\). The equation can be rewritten as: \[ \vec{a} - \vec{b} = \mu \vec{q} - \lambda \vec{p} \] ### Step 3: Dot Product with \(\vec{c}\) Now, we take the dot product of both sides with \(\vec{c}\): \[ (\vec{a} - \vec{b}) \cdot \vec{c} = \mu (\vec{q} \cdot \vec{c}) - \lambda (\vec{p} \cdot \vec{c}) \] ### Step 4: Evaluating the Dot Products Since \(\vec{p} = \vec{b} \times \vec{c}\) and \(\vec{q} = \vec{c} \times \vec{a}\), we know that: - \(\vec{p} \cdot \vec{c} = 0\) (because \(\vec{p}\) is perpendicular to \(\vec{c}\)) - \(\vec{q} \cdot \vec{c} = 0\) (because \(\vec{q}\) is also perpendicular to \(\vec{c}\)) Thus, the equation simplifies to: \[ (\vec{a} - \vec{b}) \cdot \vec{c} = 0 \] ### Step 5: Conclusion This implies that: \[ \vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c} \] This means that the correct option is: (C) \(\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c}\)

To solve the problem, we start with the equations of the two lines given: 1. \(\vec{r} = \vec{a} + \lambda (\vec{b} \times \vec{c})\) 2. \(\vec{r} = \vec{b} + \mu (\vec{c} \times \vec{a})\) Since the two lines intersect, we can set these two equations equal to each other: \[ ...
Promotional Banner

Topper's Solved these Questions

  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|33 Videos
  • MISCELLANEOUS EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

If vecA, vecB, vecC are non-coplanar vectors then (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecC)/(vecC.vecAxxvecB)=

If the three vectors veca,vecb,vecc are non coplanar express each of vecbxxvecc, veccxxveca, vecaxxvecb in terms of veca,vecb,vecc .

if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 then (a) |veca|= |vecc| (b) |veca|= |vecb| (c) |vecb|=1 (d) |veca|=|vecb|= |vecc|=1

If veca is perpendiculasr to both vecb and vecc then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) vecaxx(vecb+vecc)=vec0 (D) veca+(vecb+vecc)=vec0

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

OBJECTIVE RD SHARMA ENGLISH-PLANE AND STRAIGHT LINE IN SPACE -Chapter Test
  1. The distance of the point having position vector -hat(i) + 2hat(j) + 6...

    Text Solution

    |

  2. The position vector of the point in which the line joining the points ...

    Text Solution

    |

  3. The two lines vecr=veca+veclamda(vecbxxvecc) and vecr=vecb+mu(veccxxve...

    Text Solution

    |

  4. Lines vecr = veca(1) + lambda vecb and vecr = veca(2) + svecb will lie...

    Text Solution

    |

  5. Equation of a line passing through (-1,2,-3) and perpendicular to the ...

    Text Solution

    |

  6. Find the Vector and Cartesian equation of line passing through (1, -2,...

    Text Solution

    |

  7. The distance between the planes given by vecr.(hati+2hatj-2hatk)+5=0...

    Text Solution

    |

  8. Find shortest distance between the line vecr = (5hati + 7hatj + 3ha...

    Text Solution

    |

  9. Find the shortest distance between the lines vecr=(hatii+2hatj+hatk)+l...

    Text Solution

    |

  10. Find the equation of the plane through the points (2,2,1) and (9,3,6) ...

    Text Solution

    |

  11. The equation of the plane containing the line vecr = hati + hatj + lam...

    Text Solution

    |

  12. Find ten equation of the plane passing through the point (0,7,-7) and ...

    Text Solution

    |

  13. Equation of the plane passing through the point (1,1,1) and perpendicu...

    Text Solution

    |

  14. A variable plane at constant distance p form the origin meets the coor...

    Text Solution

    |

  15. The equation of the line of intersection of the planes x+2y+z=3 and 6x...

    Text Solution

    |

  16. Find the Cartesian form the equation of the plane vec r=(s-2t) hat i...

    Text Solution

    |

  17. If the planes vecr.(2hati-lamda hatj+3hatk)=0 and vecr.(lamda hati+5ha...

    Text Solution

    |

  18. The equation of the plane perpendicular to the line (x-1)/1=(y-2)/(-1)...

    Text Solution

    |

  19. Find the equation of a plane which passes through the point (3, 2, ...

    Text Solution

    |

  20. Determine the point in XY-plane which is equidistant from thee poin...

    Text Solution

    |