Home
Class 12
MATHS
if veca and vecb are unit vectors such ...

` if veca and vecb ` are unit vectors such that ` veca. vecb = cos theta` , then the value of `| veca + vecb|`, is

A

`2 sin theta//2`

B

` 2 sin theta`

C

` 2 cos theta //2`

D

` 2 cos theta `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|\vec{a} + \vec{b}|\) given that \(\vec{a}\) and \(\vec{b}\) are unit vectors and \(\vec{a} \cdot \vec{b} = \cos \theta\). ### Step-by-Step Solution: 1. **Understanding the Magnitudes**: Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, we have: \[ |\vec{a}| = 1 \quad \text{and} \quad |\vec{b}| = 1 \] 2. **Using the Formula for the Magnitude of a Sum of Vectors**: The magnitude of the sum of two vectors can be calculated using the formula: \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2(\vec{a} \cdot \vec{b}) \] 3. **Substituting Known Values**: Substitute the magnitudes and the dot product into the formula: \[ |\vec{a} + \vec{b}|^2 = 1^2 + 1^2 + 2(\vec{a} \cdot \vec{b}) \] This simplifies to: \[ |\vec{a} + \vec{b}|^2 = 1 + 1 + 2(\cos \theta) \] \[ |\vec{a} + \vec{b}|^2 = 2 + 2\cos \theta \] 4. **Factoring the Expression**: We can factor out a 2 from the right-hand side: \[ |\vec{a} + \vec{b}|^2 = 2(1 + \cos \theta) \] 5. **Using the Trigonometric Identity**: We know from trigonometric identities that: \[ 1 + \cos \theta = 2 \cos^2\left(\frac{\theta}{2}\right) \] Therefore, we can substitute this into our equation: \[ |\vec{a} + \vec{b}|^2 = 2 \cdot 2 \cos^2\left(\frac{\theta}{2}\right) \] \[ |\vec{a} + \vec{b}|^2 = 4 \cos^2\left(\frac{\theta}{2}\right) \] 6. **Taking the Square Root**: Finally, to find \(|\vec{a} + \vec{b}|\), we take the square root of both sides: \[ |\vec{a} + \vec{b}| = \sqrt{4 \cos^2\left(\frac{\theta}{2}\right)} = 2 \cos\left(\frac{\theta}{2}\right) \] ### Final Answer: Thus, the value of \(|\vec{a} + \vec{b}|\) is: \[ |\vec{a} + \vec{b}| = 2 \cos\left(\frac{\theta}{2}\right) \]

To solve the problem, we need to find the value of \(|\vec{a} + \vec{b}|\) given that \(\vec{a}\) and \(\vec{b}\) are unit vectors and \(\vec{a} \cdot \vec{b} = \cos \theta\). ### Step-by-Step Solution: 1. **Understanding the Magnitudes**: Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, we have: \[ |\vec{a}| = 1 \quad \text{and} \quad |\vec{b}| = 1 ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .

If veca, vecb are unit vertors such that veca -vecb is also a unit vector, then the angle between veca and vecb , is

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

Let veca and vecb be unit vectors such that |veca+vecb|=sqrt3 . Then find the value of (2veca+5vecb).(3veca+vecb+vecaxxvecb)